Báo cáo toán học: Some Periodicity of Words and Marcus Contextual Grammars
Số trang: 7
Loại file: pdf
Dung lượng: 158.00 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Sau khi chúng tôi xác định một số Marcus ngữ pháp theo ngữ cảnh, chúng tôi cho thấy rằng các thiết lập của tất cả các từ nguyên thủy (mạnh nguyên thủy, siêu nguyên thủy) có thể được tạo ra bởi một số ngữ pháp theo ngữ cảnh của Marcus.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " Some Periodicity of Words and Marcus Contextual Grammars"Vietnam Journal of Mathematics 34:4 (2006) 381–387 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 Some Periodicity of Words and Marcus Contextual Grammars* P´l D¨m¨si1 , G´za Horv´th1 , Masami Ito2 , a oo e a and Kayoko Shikishima-Tsuji3 1 Institute of Informatics, Debrecen University, Debrecen, Egyetem t´r 1. H-4032, Hungary e 2 Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan 3 Tenri Universty, Tenri, Nara 632-8510, Japan Dedicated to Professor Do Long Van on the occasion of his 65th birthday Received June 23, 2006 Revised July 23, 2006Abstract. In this paper, first we define a periodic (semi-periodic, quasi-periodic)word and then we define a primitive (strongly primitive, hyper primitive) word. Afterwe define several Marcus contextual grammars, we show that the set of all primitive(strongly primitive, hyper primitive) words can be generated by some Marcus contex-tual grammar.2000 Mathematics Subject Classification: 68Q45.Keywords: Periodicity of words, primitive words, strongly primitive words, hyper prim-itive words, Marcus contextual grammars.1. IntroductionLet X ∗ denote the free monoid generated by a nonempty finite alphabet Xand let X + = X ∗ { } where denotes the empty word of X ∗ . For the sake of∗ Thiswork was supported by the grant of the Japan-Hungary Joint Research Project or-ganized by the Japan Society for the Promotion of Science and the Hungarian Academy ofScience, the Hungarian National Foundation for Scientific Research (OTKA T049409), andthe Grant-in-Aid for Scientific Research (No. 16-04028), Japan Society for the Promotion ofScience.382 P´l D¨m¨si, G´za Horv´th, Masami Ito, and Kayoko Shikishima-Tsuji a oo e asimplicity, if X = {a}, then we write a, a+ and a∗ instead of {a}, {a}+ and {a}∗ ,respectively. Let u ∈ X ∗ , then u is called a word over X . Let L ⊆ X ∗ , then Lis called a language over X . By |L| we denote the cardinality of L. If L ⊆ X ∗ ,then L+ denotes the set of all concatenations of words in L and L∗ = L+ ∪ { }.In particular, if L = {w }, then we write w, w + and w ∗ instead of {w }, {w }+ and{w }∗ , respectively.Definition 1.1. A word u ∈ X + is said to be periodic if u can be representedas u = vn , v ∈ X + , n ≥ 2. If u is not periodic, then it is said to be primitive.By Q we denote the set of all primitive words.Remark 1.1. Fig. 1.1 indicates that u is a periodic word. Fig. 1.1.Definition 1.2. A word u ∈ X + is said to be semi-periodic if u can be rep-resented as u = vn v , v ∈ X + , n ≥ 2 and v ∈ P r (v) where P r (v) denotes theset of all prefixes of v. If u is not semi-periodic, then it is said to be stronglyprimitive. By SQ we denote the set of all strongly primitive words.Remark 1.2. Fig. 1.2 indicates that u is a semi-periodic word. Fig. 1.2.Definition 1.3. A word u ∈ X + is said to be quasi-periodic if a letter in anyposition in u can be covered by some v ∈ X + with |v| < |u|. More precisely, ifu = wax, w, x ∈ X ∗ and a ∈ X , then v ∈ Suf (w )aP r (x) where Suf (w ) denotesthe set of all suffixes of w . If u is not quasi-periodic, then it is said to be hyperprimitive. By HQ we denote the set of all hyper primitive words.Remark 1.3. Fig. 1.3 indicates that u is a quasi-periodic word. Fig. 1.3.Some Periodicity of Words and Marcus Contextual Grammars 383 Then we have the following inclusion relations.Fact 1.1. HQ ⊂ SQ ⊂ Q.Proof. That HQ ⊆ SQ ⊆ Q is obvious. Now consider the following example.Let X = {a, b, . . . }. Then ababa ∈ Q SQ and aabaaabaaba ∈ SQ HQ. ThusHQ = SQ = Q. Therefore, every inclusion is proper.2. Marcus Contextual GrammarsWe begin this section by the following definition.Definition 2.1. (Marcus) contextual grammar with choice is a structure G =(X, A, C, ϕ) where X is an alphabet, A is a finite subset of X ∗ , i.e. the set ofaxioms, C is a finite subset of X ∗ × X ∗ , i.e. the set of contexts, and ϕ : X ∗ → 2Cis the choice function. If ϕ(x) = C holds for every x ∈ X ∗ then we say thatG is a (Marcus) contextual grammar without choice. In this case, we writeG = (X, A, C ) instead of writing G = (X, A, ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " Some Periodicity of Words and Marcus Contextual Grammars"Vietnam Journal of Mathematics 34:4 (2006) 381–387 9LHWQD P -RXUQDO RI 0$ 7+ (0$ 7, &6 9$67 Some Periodicity of Words and Marcus Contextual Grammars* P´l D¨m¨si1 , G´za Horv´th1 , Masami Ito2 , a oo e a and Kayoko Shikishima-Tsuji3 1 Institute of Informatics, Debrecen University, Debrecen, Egyetem t´r 1. H-4032, Hungary e 2 Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan 3 Tenri Universty, Tenri, Nara 632-8510, Japan Dedicated to Professor Do Long Van on the occasion of his 65th birthday Received June 23, 2006 Revised July 23, 2006Abstract. In this paper, first we define a periodic (semi-periodic, quasi-periodic)word and then we define a primitive (strongly primitive, hyper primitive) word. Afterwe define several Marcus contextual grammars, we show that the set of all primitive(strongly primitive, hyper primitive) words can be generated by some Marcus contex-tual grammar.2000 Mathematics Subject Classification: 68Q45.Keywords: Periodicity of words, primitive words, strongly primitive words, hyper prim-itive words, Marcus contextual grammars.1. IntroductionLet X ∗ denote the free monoid generated by a nonempty finite alphabet Xand let X + = X ∗ { } where denotes the empty word of X ∗ . For the sake of∗ Thiswork was supported by the grant of the Japan-Hungary Joint Research Project or-ganized by the Japan Society for the Promotion of Science and the Hungarian Academy ofScience, the Hungarian National Foundation for Scientific Research (OTKA T049409), andthe Grant-in-Aid for Scientific Research (No. 16-04028), Japan Society for the Promotion ofScience.382 P´l D¨m¨si, G´za Horv´th, Masami Ito, and Kayoko Shikishima-Tsuji a oo e asimplicity, if X = {a}, then we write a, a+ and a∗ instead of {a}, {a}+ and {a}∗ ,respectively. Let u ∈ X ∗ , then u is called a word over X . Let L ⊆ X ∗ , then Lis called a language over X . By |L| we denote the cardinality of L. If L ⊆ X ∗ ,then L+ denotes the set of all concatenations of words in L and L∗ = L+ ∪ { }.In particular, if L = {w }, then we write w, w + and w ∗ instead of {w }, {w }+ and{w }∗ , respectively.Definition 1.1. A word u ∈ X + is said to be periodic if u can be representedas u = vn , v ∈ X + , n ≥ 2. If u is not periodic, then it is said to be primitive.By Q we denote the set of all primitive words.Remark 1.1. Fig. 1.1 indicates that u is a periodic word. Fig. 1.1.Definition 1.2. A word u ∈ X + is said to be semi-periodic if u can be rep-resented as u = vn v , v ∈ X + , n ≥ 2 and v ∈ P r (v) where P r (v) denotes theset of all prefixes of v. If u is not semi-periodic, then it is said to be stronglyprimitive. By SQ we denote the set of all strongly primitive words.Remark 1.2. Fig. 1.2 indicates that u is a semi-periodic word. Fig. 1.2.Definition 1.3. A word u ∈ X + is said to be quasi-periodic if a letter in anyposition in u can be covered by some v ∈ X + with |v| < |u|. More precisely, ifu = wax, w, x ∈ X ∗ and a ∈ X , then v ∈ Suf (w )aP r (x) where Suf (w ) denotesthe set of all suffixes of w . If u is not quasi-periodic, then it is said to be hyperprimitive. By HQ we denote the set of all hyper primitive words.Remark 1.3. Fig. 1.3 indicates that u is a quasi-periodic word. Fig. 1.3.Some Periodicity of Words and Marcus Contextual Grammars 383 Then we have the following inclusion relations.Fact 1.1. HQ ⊂ SQ ⊂ Q.Proof. That HQ ⊆ SQ ⊆ Q is obvious. Now consider the following example.Let X = {a, b, . . . }. Then ababa ∈ Q SQ and aabaaabaaba ∈ SQ HQ. ThusHQ = SQ = Q. Therefore, every inclusion is proper.2. Marcus Contextual GrammarsWe begin this section by the following definition.Definition 2.1. (Marcus) contextual grammar with choice is a structure G =(X, A, C, ϕ) where X is an alphabet, A is a finite subset of X ∗ , i.e. the set ofaxioms, C is a finite subset of X ∗ × X ∗ , i.e. the set of contexts, and ϕ : X ∗ → 2Cis the choice function. If ϕ(x) = C holds for every x ∈ X ∗ then we say thatG is a (Marcus) contextual grammar without choice. In this case, we writeG = (X, A, C ) instead of writing G = (X, A, ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 350 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 227 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 217 0 0 -
23 trang 203 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 177 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 171 0 0 -
8 trang 168 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 162 0 0 -
8 trang 157 0 0