Danh mục

Báo cáo toán học: Some Remarks on Weak Amenability of Weighted Group Algebras

Số trang: 8      Loại file: pdf      Dung lượng: 117.26 KB      Lượt xem: 10      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 4,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong [1] các tác giả xem xét các điều kiện ω ω đủ (n) (-n) = o (n)amenability yếu Beurling đại số trên các số nguyên. Trong bài báo này, chúng tôi cho thấy đặc tính này không khái quát được các nhóm abelian không.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " Some Remarks on Weak Amenability of Weighted Group Algebras" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:3 (2005) 350–356 RI 0$7+(0$7,&6 ‹ 9$67 Some Remarks on Weak Amenability of Weighted Group Algebras A. Pourabbas and M. R. Yegan Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran Received December 19, 2004Abstract. In [1] the authors consider the sufficient condition ω (n)ω (−n) = o(n)for weak amenability of Beurling algebras on the integers. In this paper we show thatthis characterization does not generalize to non-abelian groups.1. IntroductionThe Banach algebra A is amenable if H1 (A, X ) = 0 for every Banach A-bimodule X , that is, every bounded derivation D : A → X is inner. Thisdefinition was introduced by Johnson in (1972) [5]. The Banach algebra A isweakly amenable if H1 (A, A ) = 0. This definition generalizes the one whichwas introduced by Bade, Curtis and Dales in [1], where it was noted that acommutative Banach algebra A is weakly amenable if and only if H1 (A, X ) = 0for every symmetric Banach A-bimodule X . In [7] Johnson showed that L1 (G) is weakly amenable for every locally com-pact group. In [9] Pourabbas proved that L1 (G, ω ) is weakly amenable wheneversup{ω (g )ω (g −1 ) : g ∈ G} < ∞. Grønbæk [3] proved that the Beurling algebra 1 (Z, ω ) is weakly amenable if and only if |n| : n ∈ Z = ∞. sup ω (n)ω (−n)In [3] he also characterized the weak amenability of 1 (G, ω ) for abelian groupG. He showed that(∗) The Beurling algebra 1 (G, ω ) is weakly amenable if and only if350 A. Pourabbas and M. R. Yegan |f (g )| :g∈G =∞ sup ω (g )ω (g −1 )for all f ∈ HomZ (G, C){0}. The first author [8] generalizes the ’only if’ partof (∗) for non-abelian groups. Borwick in [2] showed that Grønbæk’s charac-terization does not generalize to non-abelian groups by exhibiting a group withnon-zero additive functions but such that 1 (G, ω ) is not weakly amenable. For non-abelian groups, Borwick [2] gives a very interesting classification ofweak amenability of Beurling algebras in term of functions defined on G.Theorem 1.1. [2, Theorem 2.23] Let 1 (G, ω ) be a weighted non-abelian groupalgebra and let {Ci }i∈I be the partition of G into conjugacy classes. For eachi ∈ I , let Fi denote the set of nonzero functions ψ : G → C which are supportedon Ci and such that ψ (XY ) − ψ (Y X ) : X, Y ∈ G, XY ∈ Ci < ∞. sup ω (X )ω (Y )Then 1 (G, ω ) is weakly amenable if and only if for each i ∈ I every element ofFi is contained in ∞ (G, ω −1 ), that is, if and only if every ψ ∈ Fi satisfies ψ (XY X −1 ) < ∞, (Y ∈ Ci ). sup ω (XY X −1 ) X ∈G In [1] the authors consider the sufficient condition ω (n)ω (−n) = 0(n) forweak amenability of Beurling algebras on the integers. For abelian groups wehave the following result:Proposition 1.2. Let G be a discrete abelian group and let ω be a weight on n −nG such that limn→∞ ω(g )ω(g ) = 0 for every g ∈ G. Then 1 (G, ω ) is weakly namenable.Proof. If 1 (G, ω ) is not weakly amenable, then by [3, Corollary 4.8] there existsa φ ∈ Hom (G, C) {0} such that supg∈G ω(g|)ωgg| 1 ) = K < ∞. Hence for every φ( ) (−g∈G |φ(g n )| n|φ(g )| ≤ K, = ω (g n )ω (g −n ) ω (g n )ω (g −n ) ω ( g n ) ω ( g −n ) | φ(g )| ≥or equivalently K. Therefore n ω (g )ω (g −n ) n ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: