Danh mục

Báo cáo toán học: Some Results on Mid-Point Sets of Sets of Natural Numbers

Số trang: 5      Loại file: pdf      Dung lượng: 92.82 KB      Lượt xem: 7      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong bài báo này các tác giả nghiên cứu một số tài sản giữa các bộ điểm của bộ số tự nhiên bằng cách sử dụng trên (thấp hơn) mật độ tiệm cận của bộ số tự nhiên. Trong kết nối này thiết lập một đã được giới thiệu ở đây và nghiên cứu.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "Some Results on Mid-Point Sets of Sets of Natural Numbers" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:1 (2005) 85–89 RI 0$7+(0$7,&6 ‹ 9$67 Some Results on Mid-Point Sets of Sets of Natural Numbers D. K. Ganguly1 , Rumki Bhattacharjee1 , and Maitreyee Dasgupta2 1 Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India 2 WIB(M) 3/2, Phase II, Golf Green, Kolkata 700 095, India Received February 4, 2004Abstract. In this paper the authors study some properties of the mid-point setsof sets of natural numbers using upper (lower) asymptotic density of sets of naturalnumbers. In this connection a set has been introduced here and studied.1. IntroductionLet P and Q be two linear sets of points. The mid-point set M (P, Q) has been x+y : x ∈ P, y ∈ Q . In particular, fordefined as the set M (P, Q) = 2P = Q, we write M (P, P ) = M (P ). Again whenever A and B are two linearsets of points with positive abscissae then their ratio set R(A, B ) is defined asR(A, B ) = {(a/b) : a ∈ A, b ∈ B }. In particular, when A = B , we writeR(A, A) = R(A). With the usual notations N is the set of natural numbers andR+ is the set of positive rational numbers. One may recall here the notion of asymptotic density of a set of positive ˘integers which is extensively used by Sala t [5] in studying some properties ofratio sets of sets of natural numbers. Later, other authors viz Bukor, Kmetovaand Toth [2] worked on ratio sets of sets of natural numbers. Let A ⊂ N, A = ∅ then A(n) denotes the counting function of A given by A(n)A(n) = 1. The lower asymptotic density of A is given by lim inf = n→∞ n a∈A, a≤n A(n)d(A) and the upper asymptotic density is given by lim sup = d(A). If n n→∞86 D. K. Ganguly, Rumki Bhattacharjee, and Maitreyee Dasguptad(A) = d(A) we call the common value d(A) as the asymptotic density of A. On the other hand, mid-point sets, primarily of Cantor type sets were studiedby Randolph [4] and subsequently by Bose Majumdar [1]. Then Ganguly andMajumdar [3] proved some results on mid-point sets of two linear sets in thelight of the Lebesgue density. In the present paper the authors restrict theirinvestigations into mid-point sets of sets of natural numbers with the help of thenotion of asymptotic density.2. Main ResultsWe shall study some properties of A ⊂ N which guarantee the denseness of M (A)in [1, ∞).Theorem 2.1. Let d(A) = 1 where A ⊂ N. Then each positive rational numbercan be represented as the mid-point for infinite number of pairs (g, h), g ∈ A,h ∈ A.Proof. Assuming the theorem not to be true there must exist an r(∈ R+ ) = g+h(p/q ) = 1, (p, q ) = 1 such that r = only for a finite number of pairs 2(g, h), g ∈ A, h ∈ A. Let (gi , hi ), i = 1, 2, ..., m, be all the pairs of numbers g i + hiof A satisfying the relation r = , i = 1, 2, ..., m. Let us denote max 2(g1 , g2 , ..., gm , h1 , h2 , ..., hm ) by a and form the sequence a, a + 1, ..., n (n > a). (1)The numbers in the sequence (1) are characterized by the fact that the mid-point of any two of them is different from r. Now, to sequence (1) belong all thenumbers p + u where a < p + u ≤ n i.e. a − p < u ≤ n − p. (α)and also the numbers q − v where a < q − v ≤ n i.e. a − q < −v ≤ n − q. (β )Next we put s = max(p, q ) and s = min(p, q ). Then relation (α) leads toa − s < u ≤ n − s and (β ) yields a − s < −v ≤ n − s . Combining these twoinequalities we can state that the numbers p + i, q − i belong to sequence (1) if a − s < |i| ≤ n − s . ...

Tài liệu được xem nhiều:

Tài liệu liên quan: