![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Báo cáo toán học: Some Results on Mid-Point Sets of Sets of Natural Numbers
Số trang: 5
Loại file: pdf
Dung lượng: 92.82 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Trong bài báo này các tác giả nghiên cứu một số tài sản giữa các bộ điểm của bộ số tự nhiên bằng cách sử dụng trên (thấp hơn) mật độ tiệm cận của bộ số tự nhiên. Trong kết nối này thiết lập một đã được giới thiệu ở đây và nghiên cứu.
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "Some Results on Mid-Point Sets of Sets of Natural Numbers" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:1 (2005) 85–89 RI 0$7+(0$7,&6 9$67 Some Results on Mid-Point Sets of Sets of Natural Numbers D. K. Ganguly1 , Rumki Bhattacharjee1 , and Maitreyee Dasgupta2 1 Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India 2 WIB(M) 3/2, Phase II, Golf Green, Kolkata 700 095, India Received February 4, 2004Abstract. In this paper the authors study some properties of the mid-point setsof sets of natural numbers using upper (lower) asymptotic density of sets of naturalnumbers. In this connection a set has been introduced here and studied.1. IntroductionLet P and Q be two linear sets of points. The mid-point set M (P, Q) has been x+y : x ∈ P, y ∈ Q . In particular, fordefined as the set M (P, Q) = 2P = Q, we write M (P, P ) = M (P ). Again whenever A and B are two linearsets of points with positive abscissae then their ratio set R(A, B ) is defined asR(A, B ) = {(a/b) : a ∈ A, b ∈ B }. In particular, when A = B , we writeR(A, A) = R(A). With the usual notations N is the set of natural numbers andR+ is the set of positive rational numbers. One may recall here the notion of asymptotic density of a set of positive ˘integers which is extensively used by Sala t [5] in studying some properties ofratio sets of sets of natural numbers. Later, other authors viz Bukor, Kmetovaand Toth [2] worked on ratio sets of sets of natural numbers. Let A ⊂ N, A = ∅ then A(n) denotes the counting function of A given by A(n)A(n) = 1. The lower asymptotic density of A is given by lim inf = n→∞ n a∈A, a≤n A(n)d(A) and the upper asymptotic density is given by lim sup = d(A). If n n→∞86 D. K. Ganguly, Rumki Bhattacharjee, and Maitreyee Dasguptad(A) = d(A) we call the common value d(A) as the asymptotic density of A. On the other hand, mid-point sets, primarily of Cantor type sets were studiedby Randolph [4] and subsequently by Bose Majumdar [1]. Then Ganguly andMajumdar [3] proved some results on mid-point sets of two linear sets in thelight of the Lebesgue density. In the present paper the authors restrict theirinvestigations into mid-point sets of sets of natural numbers with the help of thenotion of asymptotic density.2. Main ResultsWe shall study some properties of A ⊂ N which guarantee the denseness of M (A)in [1, ∞).Theorem 2.1. Let d(A) = 1 where A ⊂ N. Then each positive rational numbercan be represented as the mid-point for infinite number of pairs (g, h), g ∈ A,h ∈ A.Proof. Assuming the theorem not to be true there must exist an r(∈ R+ ) = g+h(p/q ) = 1, (p, q ) = 1 such that r = only for a finite number of pairs 2(g, h), g ∈ A, h ∈ A. Let (gi , hi ), i = 1, 2, ..., m, be all the pairs of numbers g i + hiof A satisfying the relation r = , i = 1, 2, ..., m. Let us denote max 2(g1 , g2 , ..., gm , h1 , h2 , ..., hm ) by a and form the sequence a, a + 1, ..., n (n > a). (1)The numbers in the sequence (1) are characterized by the fact that the mid-point of any two of them is different from r. Now, to sequence (1) belong all thenumbers p + u where a < p + u ≤ n i.e. a − p < u ≤ n − p. (α)and also the numbers q − v where a < q − v ≤ n i.e. a − q < −v ≤ n − q. (β )Next we put s = max(p, q ) and s = min(p, q ). Then relation (α) leads toa − s < u ≤ n − s and (β ) yields a − s < −v ≤ n − s . Combining these twoinequalities we can state that the numbers p + i, q − i belong to sequence (1) if a − s < |i| ≤ n − s . ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "Some Results on Mid-Point Sets of Sets of Natural Numbers" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:1 (2005) 85–89 RI 0$7+(0$7,&6 9$67 Some Results on Mid-Point Sets of Sets of Natural Numbers D. K. Ganguly1 , Rumki Bhattacharjee1 , and Maitreyee Dasgupta2 1 Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India 2 WIB(M) 3/2, Phase II, Golf Green, Kolkata 700 095, India Received February 4, 2004Abstract. In this paper the authors study some properties of the mid-point setsof sets of natural numbers using upper (lower) asymptotic density of sets of naturalnumbers. In this connection a set has been introduced here and studied.1. IntroductionLet P and Q be two linear sets of points. The mid-point set M (P, Q) has been x+y : x ∈ P, y ∈ Q . In particular, fordefined as the set M (P, Q) = 2P = Q, we write M (P, P ) = M (P ). Again whenever A and B are two linearsets of points with positive abscissae then their ratio set R(A, B ) is defined asR(A, B ) = {(a/b) : a ∈ A, b ∈ B }. In particular, when A = B , we writeR(A, A) = R(A). With the usual notations N is the set of natural numbers andR+ is the set of positive rational numbers. One may recall here the notion of asymptotic density of a set of positive ˘integers which is extensively used by Sala t [5] in studying some properties ofratio sets of sets of natural numbers. Later, other authors viz Bukor, Kmetovaand Toth [2] worked on ratio sets of sets of natural numbers. Let A ⊂ N, A = ∅ then A(n) denotes the counting function of A given by A(n)A(n) = 1. The lower asymptotic density of A is given by lim inf = n→∞ n a∈A, a≤n A(n)d(A) and the upper asymptotic density is given by lim sup = d(A). If n n→∞86 D. K. Ganguly, Rumki Bhattacharjee, and Maitreyee Dasguptad(A) = d(A) we call the common value d(A) as the asymptotic density of A. On the other hand, mid-point sets, primarily of Cantor type sets were studiedby Randolph [4] and subsequently by Bose Majumdar [1]. Then Ganguly andMajumdar [3] proved some results on mid-point sets of two linear sets in thelight of the Lebesgue density. In the present paper the authors restrict theirinvestigations into mid-point sets of sets of natural numbers with the help of thenotion of asymptotic density.2. Main ResultsWe shall study some properties of A ⊂ N which guarantee the denseness of M (A)in [1, ∞).Theorem 2.1. Let d(A) = 1 where A ⊂ N. Then each positive rational numbercan be represented as the mid-point for infinite number of pairs (g, h), g ∈ A,h ∈ A.Proof. Assuming the theorem not to be true there must exist an r(∈ R+ ) = g+h(p/q ) = 1, (p, q ) = 1 such that r = only for a finite number of pairs 2(g, h), g ∈ A, h ∈ A. Let (gi , hi ), i = 1, 2, ..., m, be all the pairs of numbers g i + hiof A satisfying the relation r = , i = 1, 2, ..., m. Let us denote max 2(g1 , g2 , ..., gm , h1 , h2 , ..., hm ) by a and form the sequence a, a + 1, ..., n (n > a). (1)The numbers in the sequence (1) are characterized by the fact that the mid-point of any two of them is different from r. Now, to sequence (1) belong all thenumbers p + u where a < p + u ≤ n i.e. a − p < u ≤ n − p. (α)and also the numbers q − v where a < q − v ≤ n i.e. a − q < −v ≤ n − q. (β )Next we put s = max(p, q ) and s = min(p, q ). Then relation (α) leads toa − s < u ≤ n − s and (β ) yields a − s < −v ≤ n − s . Combining these twoinequalities we can state that the numbers p + i, q − i belong to sequence (1) if a − s < |i| ≤ n − s . ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcTài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 361 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 247 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 223 0 0 -
23 trang 216 0 0
-
40 trang 201 0 0
-
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 192 0 0 -
8 trang 190 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 187 0 0 -
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 178 0 0 -
Chuyên đề mạng máy tính: Tìm hiểu và Cài đặt Group Policy trên windows sever 2008
18 trang 167 0 0