Báo cáo toán học: The Existence of Solutions to Generalized Bilevel Vector Optimization Problems
Số trang: 18
Loại file: pdf
Dung lượng: 182.27 KB
Lượt xem: 6
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Vấn đề tối ưu hóa tổng quát bilevel vector được xây dựng và một số điều kiện đầy đủ về sự tồn tại của các giải pháp cho bilevel tổng quát một cách yếu ớt, Pareto và các vấn đề lý tưởng được thể hiện. Như trường hợp đặc biệt, chúng ta có được kết quả trên sự tồn tại của các giải pháp cho các vấn đề lập trình tổng quát bilevel Lignola và Morgan. Đây cũng bao gồm một số lượng lớn các kết quả liên quan đến sự bất bình đẳng Variational và bán Variational, cân bằng...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " The Existence of Solutions to Generalized Bilevel Vector Optimization Problems" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:3 (2005) 291–308 RI 0$7+(0$7,&6 9$67 The Existence of Solutions to Generalized Bilevel Vector Optimization Problems Nguyen Ba Minh and Nguyen Xuan Tan* Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam Received April 29, 2004 Revised October 6, 2005Abstract. Generalized bilevel vector optimization problems are formulated and somesufficient conditions on the existence of solutions for generalized bilevel weakly, Paretoand ideal problems are shown. As special case, we obtain results on the existence ofsolutions to generalized bilevel programming problems given by Lignola and Morgan.These also include a large number of results concerning variational and quasi-variationalinequalities, equilibrium and quasi-equilibrium problems.1. IntroductionLet D be a subset of a topological vector space X and R be the space of realnumbers. Given a real function f from D into R, the problem of finding x ∈ D ¯such that f (¯) = min f (x) x x ∈Dplays a central role in the optimization theory. There is a number of bookson optimization theory for linear, convex, Lipschitz and, in general, continuousproblems. Today this problem is also formulated for vector multi-valued map-pings. One developed the optimization theory concerning multi-valued mappings∗ The author was partially supported by the Fritz-Thyssen Foundation from Germanyfor the three months stay at the Institute of Mathematics of the Humboldt Universityin Berlin and the Institute of Mathematics of the Cologne University.292 Nguyen Ba Minh and Nguyen Xuan Tanwith the methodology and the applications similar to the ones with scalar func-tions. Given a cone C in a topological vector space Y and a subset A ⊂ Y , onecan define efficient points of A with respect to C by different senses as: Ideal,Pareto, Properly, Weakly, ... (see Definition 2 below). The set of these efficientpoints is denoted by α Min (A/C ) for the case of ideal, Pareto, properly, weaklyefficient points, respectively. By 2Y we denote the family of all subsets in Y . Fora given multi-valued mapping F : D → 2Y , we consider the problem of findingx ∈ D such that¯ F (¯) ∩ α Min (F (D)/C ) = ∅. x (GV OP )α This is called a general vector α optimization problem corresponding to Dand F . The set of such points x is denoted by αS (D, F ; C ) and is called the ¯solution set of (GV OP )α . The elements of α Min (F (D)/C ) are called optimalvalues of (GV OP )α . These problems have been studied by many authors, forexamples, Corley [6], Luc [14], Benson [1], Jahn [11], Sterna-Karwat [21],... Now, let X, Y and Z be topological vector spaces, D ⊂ X, K ⊂ Z benonempty subsets and C ⊂ Y be a cone. Given the following multi-valuedmappings S : D → 2D , T : D → 2K , F : D × K × D → 2Y ,we are interested in the problem of finding x ∈ D, z ∈ K such that ¯ ¯ x ∈ S (¯), ¯ x z ∈ T (¯) ¯ x (GV QOP )αand F (¯, z , x) ∩ α Min (F (¯, z , S (¯)) = ∅. x¯¯ x¯ xThis is called a general vector α quasi-optimization problem (α is one of thewords: “ideal”, “Pareto”, “properly”, “weakly”, ..., respectively ). Such a couple(¯, z ) is said to be the solution of (GV QOP )α . The set of such solutions is said x¯to be the solution set of (GV QOP )α and denoted by αS (D, K, S, T, F, C ). Theabove multi-valued mappings S, T and F are called a constraint, potential andutility mapping, respectively. These problems contain as special cases, for example, quasi-equilibrium prob-lems, quasi-variational inequalities, fixed point problems, complementarity prob-lems, as well as different others that have been considered by many mathemati-cians as: Park [20], Chan and Pang [5], Parida and Sen [19], Fu [ ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: " The Existence of Solutions to Generalized Bilevel Vector Optimization Problems" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:3 (2005) 291–308 RI 0$7+(0$7,&6 9$67 The Existence of Solutions to Generalized Bilevel Vector Optimization Problems Nguyen Ba Minh and Nguyen Xuan Tan* Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam Received April 29, 2004 Revised October 6, 2005Abstract. Generalized bilevel vector optimization problems are formulated and somesufficient conditions on the existence of solutions for generalized bilevel weakly, Paretoand ideal problems are shown. As special case, we obtain results on the existence ofsolutions to generalized bilevel programming problems given by Lignola and Morgan.These also include a large number of results concerning variational and quasi-variationalinequalities, equilibrium and quasi-equilibrium problems.1. IntroductionLet D be a subset of a topological vector space X and R be the space of realnumbers. Given a real function f from D into R, the problem of finding x ∈ D ¯such that f (¯) = min f (x) x x ∈Dplays a central role in the optimization theory. There is a number of bookson optimization theory for linear, convex, Lipschitz and, in general, continuousproblems. Today this problem is also formulated for vector multi-valued map-pings. One developed the optimization theory concerning multi-valued mappings∗ The author was partially supported by the Fritz-Thyssen Foundation from Germanyfor the three months stay at the Institute of Mathematics of the Humboldt Universityin Berlin and the Institute of Mathematics of the Cologne University.292 Nguyen Ba Minh and Nguyen Xuan Tanwith the methodology and the applications similar to the ones with scalar func-tions. Given a cone C in a topological vector space Y and a subset A ⊂ Y , onecan define efficient points of A with respect to C by different senses as: Ideal,Pareto, Properly, Weakly, ... (see Definition 2 below). The set of these efficientpoints is denoted by α Min (A/C ) for the case of ideal, Pareto, properly, weaklyefficient points, respectively. By 2Y we denote the family of all subsets in Y . Fora given multi-valued mapping F : D → 2Y , we consider the problem of findingx ∈ D such that¯ F (¯) ∩ α Min (F (D)/C ) = ∅. x (GV OP )α This is called a general vector α optimization problem corresponding to Dand F . The set of such points x is denoted by αS (D, F ; C ) and is called the ¯solution set of (GV OP )α . The elements of α Min (F (D)/C ) are called optimalvalues of (GV OP )α . These problems have been studied by many authors, forexamples, Corley [6], Luc [14], Benson [1], Jahn [11], Sterna-Karwat [21],... Now, let X, Y and Z be topological vector spaces, D ⊂ X, K ⊂ Z benonempty subsets and C ⊂ Y be a cone. Given the following multi-valuedmappings S : D → 2D , T : D → 2K , F : D × K × D → 2Y ,we are interested in the problem of finding x ∈ D, z ∈ K such that ¯ ¯ x ∈ S (¯), ¯ x z ∈ T (¯) ¯ x (GV QOP )αand F (¯, z , x) ∩ α Min (F (¯, z , S (¯)) = ∅. x¯¯ x¯ xThis is called a general vector α quasi-optimization problem (α is one of thewords: “ideal”, “Pareto”, “properly”, “weakly”, ..., respectively ). Such a couple(¯, z ) is said to be the solution of (GV QOP )α . The set of such solutions is said x¯to be the solution set of (GV QOP )α and denoted by αS (D, K, S, T, F, C ). Theabove multi-valued mappings S, T and F are called a constraint, potential andutility mapping, respectively. These problems contain as special cases, for example, quasi-equilibrium prob-lems, quasi-variational inequalities, fixed point problems, complementarity prob-lems, as well as different others that have been considered by many mathemati-cians as: Park [20], Chan and Pang [5], Parida and Sen [19], Fu [ ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 355 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 231 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 220 0 0 -
23 trang 205 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 180 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 175 0 0 -
8 trang 172 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 166 0 0 -
8 trang 158 0 0