Báo cáo toán học: When M-Cosingular Modules Are Projective
Số trang: 8
Loại file: pdf
Dung lượng: 112.77 KB
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
M là một R-mô-đun. Talebi và Vanaja điều tra loại σ [M] như vậy mà mỗi mô-đun M-cosingular trong σ [M] là projective trong σ [M]. Trong ánh sáng của tài sản này, chúng tôi gọi M một COSP-module nếu mỗi mô-đun M-cosingular projective trong σ [M].
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "When M-Cosingular Modules Are Projective" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:2 (2005) 214–221 RI 0$7+(0$7,&6 9$67 When M-Cosingular Modules Are Projective Derya Keskin T¨ t¨ nc¨ 1 and Rachid Tribak2 uu u 1 Department of Mathematics, University of Hacettepe, 06532 Beytepe, Ankara, Turkey 2 D´partement de Math´matiques, Universit´ Abdelmalek Essaˆdi, e e e a Facult´ des Sciences de T´touan, B.P. 21.21 T´touan, Morocco e e e Received September 11, 2004 Revised April 4, 2005Abstract. Let M be an R-module. Talebi and Vanaja investigate the category σ [M ]such that every M -cosingular module in σ [M ] is projective in σ [M ]. In the light ofthis property we call M a COSP-module if every M -cosingular module is projectivein σ [M ]. This note is devoted to the investigation of these classes of modules. Weprove that every COSP-module is a coatomic module having a semisimple radical.We also characterise COSP-module when every injective module in σ [M ] is amplysupplemented. Finally we obtain that a COSP-module is artinian if and only if everysubmodule has finite hollow dimension.1. IntroductionLet R be a ring with identity. All modules are unitary right R-modules. Let Mbe a module and A ⊆ M . Then A M means that A is a small submoduleof M . Any submodule A of M is called coclosed in M if A/B M /B forany submodule B of M with B ⊆ A implies that A = B . Rad (M ) denotesthe Jacobson radical of M and Soc (M ) denotes the socle of M . By σ [M ] wemean the full subcategory of the category of right modules whose objects aresubmodules of M -generated modules. A module N ∈ σ [M ] is said to be M -smallif there exists a module L ∈ σ [M ] such that N L. Let M be a module. If N and L are submodules of the module M , then Nis called a supplement of L in M if M = N + L and N ∩ L N . M is calledsupplemented if every submodule of M has a supplement in M and M is calledWhen M -Cosingular Modules Are Projective 215amply supplemented if, for all submodules N and L of M with M = N + L, Ncontains a supplement of L in M . Let M be a module. In [5], Talebi and Vanaja define Z (N ) as a dual notionto the M -singular submodule ZM (N ) of N ∈ σ [M ] as follows: Z (N ) = ∩{ Ker g | g ∈ Hom (L), L ∈ S}where S denotes the class of all M -small modules. They call N an M -cosingular(non-M -cosingular) module if Z (N ) = 0 (Z (N ) = N ). Clearly every M -smallmodule is M -cosingular. The class of all M -cosingular modules is closed undertaking submodules and direct sums by [5, Corollary 2.2] and the class of all non-M -cosingular modules is closed under homomorphic images by [5, Proposition2.4]. Let M be a module. Talebi and Vanaja investigate the category σ [M ] thatevery M -cosingular module is projective in σ [M ]. Inspired by this study we callany module M a COSP-module if every M -cosingular module is projective inσ [M ](for short).2. ResultsFirst we consider some examples.Example 2.1. Let p be a prime integer and M denote the Z-module, Z/pk Z withk ≥ 2. Let N = p(k−1) Z/pk Z. It is clear that N ∼ Z/pZ and N ∼ M/L where = =L = pZ/pk Z. Since N M , N is M -cosingular. Now N is not M -projective.Otherwise M/L is M projective and L = 0 by [4, Lemma 4.30]. Therefore M isnot COSP.Example 2.2. Let S be a simple module. It is clear that every module in σ [S ]is semisimple. Now if L is an S -small module, then there is H ∈ σ [S ] such thatL H . Since H is semisimple, L is a direct summand of H . Hence L = 0.Therefore Z S (N ) = N for all N ∈ σ [S ] i.e, every N ∈ σ [S ] is non-S -cosingular.Thus S is a COSP-module.Proposition 2.3. Let M be a COSP-module. Then the following statementsare true.(1) Every M -small module is semisimple.(2) For every module N ∈ σ [M ], Rad (N ) ⊆ Soc (N ).Proof.(1) Let N ∈ σ [M ] and N K for some module K ∈ σ [M ]. Assume T ≤ N .Since N and N/T are M -cosingular, N ⊕ N/T is M -cosingular. Therefore N/Tis N -projective because M is COSP. Thus T is a direct summand of N .(2) Let N ∈ σ [M ]. Since Rad (N ) = i∈I Ni with Ni N , Rad (N ) issemisimple by (1). Hence Rad (N ) ⊆ Soc (N ).Proposition 2.4. Let M be a module. Then M is COSP if and only if every ...
Nội dung trích xuất từ tài liệu:
Báo cáo toán học: "When M-Cosingular Modules Are Projective" 9LHWQDP -RXUQDOVietnam Journal of Mathematics 33:2 (2005) 214–221 RI 0$7+(0$7,&6 9$67 When M-Cosingular Modules Are Projective Derya Keskin T¨ t¨ nc¨ 1 and Rachid Tribak2 uu u 1 Department of Mathematics, University of Hacettepe, 06532 Beytepe, Ankara, Turkey 2 D´partement de Math´matiques, Universit´ Abdelmalek Essaˆdi, e e e a Facult´ des Sciences de T´touan, B.P. 21.21 T´touan, Morocco e e e Received September 11, 2004 Revised April 4, 2005Abstract. Let M be an R-module. Talebi and Vanaja investigate the category σ [M ]such that every M -cosingular module in σ [M ] is projective in σ [M ]. In the light ofthis property we call M a COSP-module if every M -cosingular module is projectivein σ [M ]. This note is devoted to the investigation of these classes of modules. Weprove that every COSP-module is a coatomic module having a semisimple radical.We also characterise COSP-module when every injective module in σ [M ] is amplysupplemented. Finally we obtain that a COSP-module is artinian if and only if everysubmodule has finite hollow dimension.1. IntroductionLet R be a ring with identity. All modules are unitary right R-modules. Let Mbe a module and A ⊆ M . Then A M means that A is a small submoduleof M . Any submodule A of M is called coclosed in M if A/B M /B forany submodule B of M with B ⊆ A implies that A = B . Rad (M ) denotesthe Jacobson radical of M and Soc (M ) denotes the socle of M . By σ [M ] wemean the full subcategory of the category of right modules whose objects aresubmodules of M -generated modules. A module N ∈ σ [M ] is said to be M -smallif there exists a module L ∈ σ [M ] such that N L. Let M be a module. If N and L are submodules of the module M , then Nis called a supplement of L in M if M = N + L and N ∩ L N . M is calledsupplemented if every submodule of M has a supplement in M and M is calledWhen M -Cosingular Modules Are Projective 215amply supplemented if, for all submodules N and L of M with M = N + L, Ncontains a supplement of L in M . Let M be a module. In [5], Talebi and Vanaja define Z (N ) as a dual notionto the M -singular submodule ZM (N ) of N ∈ σ [M ] as follows: Z (N ) = ∩{ Ker g | g ∈ Hom (L), L ∈ S}where S denotes the class of all M -small modules. They call N an M -cosingular(non-M -cosingular) module if Z (N ) = 0 (Z (N ) = N ). Clearly every M -smallmodule is M -cosingular. The class of all M -cosingular modules is closed undertaking submodules and direct sums by [5, Corollary 2.2] and the class of all non-M -cosingular modules is closed under homomorphic images by [5, Proposition2.4]. Let M be a module. Talebi and Vanaja investigate the category σ [M ] thatevery M -cosingular module is projective in σ [M ]. Inspired by this study we callany module M a COSP-module if every M -cosingular module is projective inσ [M ](for short).2. ResultsFirst we consider some examples.Example 2.1. Let p be a prime integer and M denote the Z-module, Z/pk Z withk ≥ 2. Let N = p(k−1) Z/pk Z. It is clear that N ∼ Z/pZ and N ∼ M/L where = =L = pZ/pk Z. Since N M , N is M -cosingular. Now N is not M -projective.Otherwise M/L is M projective and L = 0 by [4, Lemma 4.30]. Therefore M isnot COSP.Example 2.2. Let S be a simple module. It is clear that every module in σ [S ]is semisimple. Now if L is an S -small module, then there is H ∈ σ [S ] such thatL H . Since H is semisimple, L is a direct summand of H . Hence L = 0.Therefore Z S (N ) = N for all N ∈ σ [S ] i.e, every N ∈ σ [S ] is non-S -cosingular.Thus S is a COSP-module.Proposition 2.3. Let M be a COSP-module. Then the following statementsare true.(1) Every M -small module is semisimple.(2) For every module N ∈ σ [M ], Rad (N ) ⊆ Soc (N ).Proof.(1) Let N ∈ σ [M ] and N K for some module K ∈ σ [M ]. Assume T ≤ N .Since N and N/T are M -cosingular, N ⊕ N/T is M -cosingular. Therefore N/Tis N -projective because M is COSP. Thus T is a direct summand of N .(2) Let N ∈ σ [M ]. Since Rad (N ) = i∈I Ni with Ni N , Rad (N ) issemisimple by (1). Hence Rad (N ) ⊆ Soc (N ).Proposition 2.4. Let M be a module. Then M is COSP if and only if every ...
Tìm kiếm theo từ khóa liên quan:
báo cáo của tạp chí Vietnam Journal of Mathematics tài liệu báo cáo nghiên cứu khoa học cách trình bày báo cáo kiến thức toán học báo cáo toán họcGợi ý tài liệu liên quan:
-
HƯỚNG DẪN THỰC TẬP VÀ VIẾT BÁO CÁO THỰC TẬP TỐT NGHIỆP
18 trang 356 0 0 -
Hướng dẫn thực tập tốt nghiệp dành cho sinh viên đại học Ngành quản trị kinh doanh
20 trang 232 0 0 -
Đồ án: Nhà máy thủy điện Vĩnh Sơn - Bình Định
54 trang 221 0 0 -
23 trang 206 0 0
-
40 trang 200 0 0
-
Báo cáo môn học vi xử lý: Khai thác phần mềm Proteus trong mô phỏng điều khiển
33 trang 181 0 0 -
BÁO CÁO IPM: MÔ HÌNH '1 PHẢI 5 GIẢM' - HIỆN TRẠNG VÀ KHUYNH HƯỚNG PHÁT TRIỂN
33 trang 176 0 0 -
8 trang 174 0 0
-
Tiểu luận Nội dung và bản ý nghĩa di chúc của Chủ tịch Hồ Chí Minh
22 trang 167 0 0 -
8 trang 158 0 0