Danh mục

CÁC BIỆN PHÁP KẾT HỢP DẬP HỒ QUANG chương 3

Số trang: 19      Loại file: pdf      Dung lượng: 212.62 KB      Lượt xem: 15      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tia lửa hồ quang và dập tắt nó: Tia lửa bao quanh hồ quang là khí bị ion hoá phát sáng và có nhiệt độ cao. Sau khi ngắt dòng điện trong mạch và hồ quang bị dập tắt, tia lửa hồ quang còn tiếp tục tồn tại và phát sáng trong suốt thời gian khoảng phần mười, phần trăm giây. Sự tạo thành hơi kim loại của tiếp điểm đóng ngắt tạo điều kiện duy trì tia lửa. Độ bền cách điện của tia lửa giảm do đó ở khoảng vài chục von có thể dẫn đến sự chọc...
Nội dung trích xuất từ tài liệu:
CÁC BIỆN PHÁP KẾT HỢP DẬP HỒ QUANG chương 3 CÁC BIỆN PHÁP KẾT HỢP DẬP HỒ QUANG VÀ TIA LỬA CỦA NỔ Tia lửa hồ quang và dập tắt nó: Tia lửa bao quanh hồ quang là khí bị ion hoá phát sáng và có nhiệt độ cao. Sau khi ngắt dòng điện trong mạch và hồ quang bị dập tắt, tia lửa hồ quang còn tiếp tục tồn tại và phát sáng trong suốt thời gian khoảng phần mười, phần trăm giây. Sự tạo thành hơi kim loại của tiếp điểm đóng ngắt tạo điều kiện duy trì tia lửa. Độ bền cách điện của tia lửa giảm do đó ở khoảng vài chục von có thể dẫn đến sự chọc thủng khoảng trống mà ở điều kiện bình thường với mười nghìn von cũng không bị chọc thủng. Tia lửa có nhiệt độ cao nên dễ gây ra cháy đặc biệt là ở các chất khí và hơi dễ cháy. Trong buồng có khe dọc rộng khi ngắt dòng điện lớn hồ quang và tia lửa của nó ra khỏi giới hạn của buồng với khoảng cách lớn. Điều đó dẫn đến tăng kích thước của toàn thiết bị. Buồng có khe dọc hẹp hạn chế đáng kể kích thước hồ quang và tia lửa của nó. Nhưng không dập được tia lửa ngay cả với buồng có khe dích dắc. Khi đó dập tia lửa bằng cách dùng dàn dập. Dàn dập thường làm bằng các tấm thép cách điện với nhau và được gắn chặt vào phần trên với buồng có khe hẹp (hình 3-3 i). Các tấm kim loại đó có tính chịu nhiệt và dẫn nhiệt cao, bề mặt của chúng tiếp xúc với hồ quang lớn, chiều dài đủ lớn nên tia lửa dọc theo các tấm sẽ bị phản ion hoá mạnh. Chiều dài của các tấm dàn dập tia lửa hồ quang phụ thuộc vào giá trị dòng điện ngắt, thường vào khoảng 5 ÷ 20 mm, bề dầy và khoảng cách giữa các tấm nhỏ hơn so với dàn dập hồ quang xoay chiều (§3.5.3). Các biện pháp kết hợp dập hồ quang một chiều: Thường người ta kết hợp các biện pháp dập hồ quang với nhau để nâng cao khả năng ngắt cho thiết bị dập hồ quang 1. Kéo dài cơ khí chiều dài hồ quang, cuộn thổi từ, bố trí các chi tiết mạch vòng dẫn điện để tạo ra lực điện động đẩy hồ quang vào khe rộng (hình 3-3h). 2. Cũng giống như các biện pháp ở mục 1 nhưng ở trong khe hở hẹp (hình 3-3h). 3. Cũng như các biện pháp ở trên nhưng có sử dụng dàn dập tia lửa (hình 3-3i). §3.5- TÍNH TOÁN GẦN ĐÚNG HỆ THỐNG DẬP HỒ QUANG ĐIỆN XOAY CHIỀU ĐẾN 1000 V §3.5.1. Một số vấn đề chung. 1. Sự khác nhau cơ bản của việc dập hồ quang điện xoay chiều và một chiều: Trong hồ quang xoay chiều dòng điện qua trị số không hai lần trong một chu kỳ, khi đó ở vùng katốt độ bền cách điện được phục hồi. Thực nghiệm nhận được khi hồ quang cháy tự do với dòng điện 10 – 1000A thì độ bền điện ở katốt là 30–70V; Khi dập hồ quang bằng dàn dập là 50-70V. Người ta lợi dụng hiện tượng này để thiết kế thiết bị dập hồ quang sao cho hồ quang bị dập tắt ngay khi dòng điện qua trị số không đầu tiên. Tuy nhiên thường thấy hồ quang không bị dập tắt ngay khi dòng điện qua trị số không đầu tiên. Tuy nhiên thường thấy hồ quang không bị dập tắt ngay tại thời điểm đó. Khi dòng điện hồ quang qua trị số không ở khu vực hồ quang đồng thời xảy ra hai quá trình liên hệ mật thiết với nhau: một quá trình giúp ta dập hồ quang đó là quá trình phản ion hoá được tăng cường; một quá trình tạo điều kiện cho hồ quang cháy lại đó là quá trình phục hổi điện áp. Đặc trưng cho quá trình thứ nhất là tốc độ tăng cường độ cách điện và đặc trưng cho quá trình thứ hai là tốc độ phục hồi điện áp. Hồ quang xoay chiều được dập tắt hoàn toàn khi thoả mãn điều kiện: quá trình thứ nhất – nghĩa là tốc độ tăng cường độ cách điện phải thắng quá trình thứ hai- là tốc độ phục hồi điện áp (hình 3-13). Giá trị biên dộ của điện áp phục hồi ở tiếp điểm đóng ngắt một cực bằng giá trị biên độ của điện áp ngắt của tiếp điểm và bằng: Unguồn m = Ungắt m 1.1 2U dm = k sd .sin a (3-26) 3 Trong đó: -Uđm : giá trị hiệu dụng của điện áp định mức -a : góc lệch pha giữa dòng điện của mạch và điện áp nguồn -ksd : hệ số sơ đồ được xác định từ sơ đồ của mạch ngắt và của khí cụ đóng ngắt (phụ thuộc vào số lượng cực của khí cụ). Cụ thể như sau: + Ngắt mạch ba pha bằng khí cụ ba cực ksd = 1.5 + Cũng như vậy khi nối đất trung tính nguồn và khí cụ ksd = 1.0 + Ngắt mạch một pha bằng khí cụ hai cực ksd = o.865 + Cũng như vậy bằng khí cụ một cực ksd = 1.73 Tuỳ thuộc vào tính chất của mạch mà quá trình quá độ của điện áp phục hồi có thể là quá trình dao động (hình 3-14b). Ở quá trình không dao động điện áp phục hồi Uph không lớn hơn giá trị biên độ điện áp ngắt của nguồn cung cấp (Uph.m < Ung.m). Ở quá trình dao động điện áp phục hồi thực tế không vượt quá 2Ung.m (Uph.m < 2Ung.m) Do đó việc dập hồ quang ở qúa trình dao động nặng nề hơn. Vì vậy trong thiết kế người ta tìm mọi biện pháp để đưa hồ quang xảy ra ở quá trình dao động về quá trình không dao động. Tốc độ trung bình của điện áp phục hồi ở quá trình dao động bằng: dU ph = 2k bd . f o .U ng (3-27) dt Hinh 3_14: Điều kiện dập hồ quang a_quá trình dao động của điện áp phục hồi b_quá trình không dao động của điện áp phục hồi. Giá trị các đại lượng trong biểu thức này được xác định như sau: a)Hệ số biên độ (theo kinh nghiệm) đối với hồ quang cháy tư do: Uph.m Kbđ = = 1 + e 0,0003. f 0 (3-28) Ung b)Tần số riêng của mạch được xác định như sau : 1 f0 = Hz (3-29) 2 LC Trong đó : L_điện cảm mạch ngắt(Henri) G_điện dung mạch ngắt (Fara) Trong các trường hợp khác nhau giá trị tần số riêng sẽ khác nhau. Đối với hệ thống khi ngắt đọng cơ (đến 50 KW). Gíá trị f 0 phụ thuộc vào công su ...

Tài liệu được xem nhiều: