Chuyên đề hình học giải tích
Số trang: 62
Loại file: pdf
Dung lượng: 895.67 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 7 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các chuyên đề về HHGT trong mặt phăng và không gian
Nội dung trích xuất từ tài liệu:
Chuyên đề hình học giải tích CHUYEÂN ÑEÀ 1 TOÏA ÑOÄ PHAÚNG Trong caùc baøi toaùn veà toïa ñoä trong maët phaúng thöôøng gaëp caùc yeâu caàu nhö tìm toïa ñoämoät ñieåm, moät vectô, tính ñoä daøi moät ñoaïn thaúng, soá ño goùc giöõa hai vectô, quan heä cuøngphöông hoaëc vuoâng goùc giöõa hai vectô, 3 ñieåm thaúng haøng. Ta vaän duïng caùc kieán thöùc cô baûn sau ñaây: Cho a = ( a1 , a 2 ) , b = ( b1 , b2 ) ta coù: ⎧a1 = b1 a= b ⇔ ⎨ ⎩a 2 = b2 a + b = ( a1 + b1 , a 2 + b2 ) a – b = ( a1 - b1 , a 2 - b2 ) k a = (k a1 , k a 2 ) (k ∈ R) α a + β b = ( α a1 + β b1 , α a 2 + β b2 ) a . b = a1 b1 + a 2 b2 . Vôùi caùc quan heä veà ñoä daøi ta coù: a = ( a1 , a 2 ) ⇒ a = a12 + a 22 ⎧A ( xA , y A ) ⎪ ⎨ ⇒ AB = ( xB – x A , y B – y A ) ⎪B ( x B , y B ) ⎩ vaø AB = ( xB - xA ) + ( yB - yA ) 2 2 . Vôùi quan heä cuøng phöông hoaëc vuoâng goùc ta coù: a ⊥ b ⇔ a1 b1 + a 2 b2 = 0 a cuøng phöông b ⇔ sin( a, b) = 0 ⇔ a1 b2 – a 2 b1 = 0 a1 a ⇔ = 2 ( b1 , b2 ≠ 0) b1 b2 A, B, C thaúng haøng ⇔ AB cuøng phöông AC xB - x A y B - y A ⇔ =0 xC - x A y C - y A . Vôùi vieäc tìm goùc cuûa hai vectô ta coù: - Goùc hình hoïc taïo bôûi hai vectô a , b ñöôïc suy töø coâng thöùc: a1b1 + a 2 b2 cos( a, b ) = (1) a.b - Soá ño goùc ñònh höôùng cuûa hai vectô a , b ngoaøi (1) coøn ñöôïc suy theâm töø moät tronghai coâng thöùc: a1b2 - a2 b1 sin( a, b) = a .b a1b2 - a2 b1 tg( a, b) = a1b1 + a2 b2 Ngoaøi ra trong caùc baøi toaùn veà toïa ñoä phaúng ta coù theå aùp duïng caùc keát quaû sau ñaây: . M( x M , y M ) laø trung ñieåm cuûa ñoaïn thaúng AB ⎧ x + xB ⎪ xM = A ⎪ 2 ⇔ ⎨ ⎪y = y A + yB ⎪ M ⎩ 2 . G( x G , y G ) laø troïng taâm cuûa Δ ABC ⎧ x A + x B + xC ⎪ xG = ⎪ 3 ⇔ ⎨ ⎪y = y A + yB + yC ⎪ G ⎩ 3 . I( x I , y I ) vaø J( x J , y J ) laø chaân ñöôøng phaân giaùc trong vaø ngoaøi cuûa goùc A trongΔ ABC thì: IB JB AB = − = − IC JC AC . Vôùi A( x A , y A ), B( xB , y B ), C( xC , yC ) thì dieän tích tam giaùc ABC laø: 1 xB - x A y B - y A S= Δ vôùi Δ = 2 xC - x A y C - y AVí duï 1:Trong maët phaúng Oxy cho ba ñieåm A(2, –1), B(0, 3), C(4, 2).a) Tìm toïa ñoä ñieåm D ñoái xöùng vôùi A qua B.b) Tìm toïa ñoä ñieåm M ñeå 2 AM + 3 BM - 4 CM = 0c) Tìm toïa ñoä ñieåm E ñeå ABCE laø hình thang coù moät caïnh ñaùy laø AB vaø E naèm treân Ox.d) Tìm toïa ñoä tröïc taâm H, troïng taâm G vaø taâm I ñöôøng troøn ngoaïi tieáp Δ ABC.e) Chöùng toû H, G, I thaúng haøng. Giaûia) D laø ñieåm ñoái xöùng cuûa A qua B ⇔ B laø trung ñieåm cuûa AD ⎧ xA + xD ⎪x B = ⎪ 2 ⇔ ⎨ ⎪y = y A + y D ⎪ B ⎩ 2 ⎧ x D = 2x B − x A = 2 ( 0 ) − 2 = − 2 ⎪ ⇔ ⎨ hay D(–2, 7) ⎪ y D = 2y B − y A = 2 ( 3 ) + 1 = 7 ⎩b) Ta coù: 2 AM + 3 BM – 4 CM = 0 = ( 0, 0 ) ⎧2 ( x M − 2 ) + 3 ( x M − 0 ) − 4 ( x M − 4 ) = 0 ⎪ ⇔ ⎨ ...
Nội dung trích xuất từ tài liệu:
Chuyên đề hình học giải tích CHUYEÂN ÑEÀ 1 TOÏA ÑOÄ PHAÚNG Trong caùc baøi toaùn veà toïa ñoä trong maët phaúng thöôøng gaëp caùc yeâu caàu nhö tìm toïa ñoämoät ñieåm, moät vectô, tính ñoä daøi moät ñoaïn thaúng, soá ño goùc giöõa hai vectô, quan heä cuøngphöông hoaëc vuoâng goùc giöõa hai vectô, 3 ñieåm thaúng haøng. Ta vaän duïng caùc kieán thöùc cô baûn sau ñaây: Cho a = ( a1 , a 2 ) , b = ( b1 , b2 ) ta coù: ⎧a1 = b1 a= b ⇔ ⎨ ⎩a 2 = b2 a + b = ( a1 + b1 , a 2 + b2 ) a – b = ( a1 - b1 , a 2 - b2 ) k a = (k a1 , k a 2 ) (k ∈ R) α a + β b = ( α a1 + β b1 , α a 2 + β b2 ) a . b = a1 b1 + a 2 b2 . Vôùi caùc quan heä veà ñoä daøi ta coù: a = ( a1 , a 2 ) ⇒ a = a12 + a 22 ⎧A ( xA , y A ) ⎪ ⎨ ⇒ AB = ( xB – x A , y B – y A ) ⎪B ( x B , y B ) ⎩ vaø AB = ( xB - xA ) + ( yB - yA ) 2 2 . Vôùi quan heä cuøng phöông hoaëc vuoâng goùc ta coù: a ⊥ b ⇔ a1 b1 + a 2 b2 = 0 a cuøng phöông b ⇔ sin( a, b) = 0 ⇔ a1 b2 – a 2 b1 = 0 a1 a ⇔ = 2 ( b1 , b2 ≠ 0) b1 b2 A, B, C thaúng haøng ⇔ AB cuøng phöông AC xB - x A y B - y A ⇔ =0 xC - x A y C - y A . Vôùi vieäc tìm goùc cuûa hai vectô ta coù: - Goùc hình hoïc taïo bôûi hai vectô a , b ñöôïc suy töø coâng thöùc: a1b1 + a 2 b2 cos( a, b ) = (1) a.b - Soá ño goùc ñònh höôùng cuûa hai vectô a , b ngoaøi (1) coøn ñöôïc suy theâm töø moät tronghai coâng thöùc: a1b2 - a2 b1 sin( a, b) = a .b a1b2 - a2 b1 tg( a, b) = a1b1 + a2 b2 Ngoaøi ra trong caùc baøi toaùn veà toïa ñoä phaúng ta coù theå aùp duïng caùc keát quaû sau ñaây: . M( x M , y M ) laø trung ñieåm cuûa ñoaïn thaúng AB ⎧ x + xB ⎪ xM = A ⎪ 2 ⇔ ⎨ ⎪y = y A + yB ⎪ M ⎩ 2 . G( x G , y G ) laø troïng taâm cuûa Δ ABC ⎧ x A + x B + xC ⎪ xG = ⎪ 3 ⇔ ⎨ ⎪y = y A + yB + yC ⎪ G ⎩ 3 . I( x I , y I ) vaø J( x J , y J ) laø chaân ñöôøng phaân giaùc trong vaø ngoaøi cuûa goùc A trongΔ ABC thì: IB JB AB = − = − IC JC AC . Vôùi A( x A , y A ), B( xB , y B ), C( xC , yC ) thì dieän tích tam giaùc ABC laø: 1 xB - x A y B - y A S= Δ vôùi Δ = 2 xC - x A y C - y AVí duï 1:Trong maët phaúng Oxy cho ba ñieåm A(2, –1), B(0, 3), C(4, 2).a) Tìm toïa ñoä ñieåm D ñoái xöùng vôùi A qua B.b) Tìm toïa ñoä ñieåm M ñeå 2 AM + 3 BM - 4 CM = 0c) Tìm toïa ñoä ñieåm E ñeå ABCE laø hình thang coù moät caïnh ñaùy laø AB vaø E naèm treân Ox.d) Tìm toïa ñoä tröïc taâm H, troïng taâm G vaø taâm I ñöôøng troøn ngoaïi tieáp Δ ABC.e) Chöùng toû H, G, I thaúng haøng. Giaûia) D laø ñieåm ñoái xöùng cuûa A qua B ⇔ B laø trung ñieåm cuûa AD ⎧ xA + xD ⎪x B = ⎪ 2 ⇔ ⎨ ⎪y = y A + y D ⎪ B ⎩ 2 ⎧ x D = 2x B − x A = 2 ( 0 ) − 2 = − 2 ⎪ ⇔ ⎨ hay D(–2, 7) ⎪ y D = 2y B − y A = 2 ( 3 ) + 1 = 7 ⎩b) Ta coù: 2 AM + 3 BM – 4 CM = 0 = ( 0, 0 ) ⎧2 ( x M − 2 ) + 3 ( x M − 0 ) − 4 ( x M − 4 ) = 0 ⎪ ⇔ ⎨ ...
Tìm kiếm theo từ khóa liên quan:
khoa học tự nhiên toán học giải tích đại số tích phân hình học giải tíchGợi ý tài liệu liên quan:
-
176 trang 278 3 0
-
Giáo trình Hình học giải tích: Phần 1
88 trang 109 0 0 -
14 trang 99 0 0
-
700 Câu trắc nghiệm Tích phân có đáp án
90 trang 71 0 0 -
Giáo trình Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 1): Phần 2
234 trang 67 0 0 -
Đại số tuyến tính và hình học giải tích - Bài tập tuyển chọn (Tái bản lần thứ 3): Phần 2
234 trang 64 0 0 -
Bài giảng Đại số tuyến tính và Hình học giải tích - Hy Đức Mạnh
139 trang 55 0 0 -
Tuyển tập bài tập đại số tuyến tính và hình học giải tích (in lần thứ 3): Phần 1
146 trang 53 0 0 -
Tổng hợp nano ZnO sử dụng làm điện cực âm trong nguồn điện bạc - kẽm
5 trang 47 0 0 -
Ôn thi THPT Quốc gia môn Toán (Tập 3)
335 trang 46 0 0