Danh mục

Chuyên đề luyện thi Đại học: Một số kĩ năng giải phương trình lượng giác

Số trang: 4      Loại file: doc      Dung lượng: 126.00 KB      Lượt xem: 12      Lượt tải: 0    
Jamona

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đa số các bài toán về giải phương trình lượng giác đều rơi vào một trong hai dạng: phương trình đưa về dạng tích và phương trình chứa ẩn ở mẫu. Nhằm giúp các bạn ôn thi có kết quả tốt, bài viết này xin giới thiệu một số kĩ năng quan trọng của dạng toán đó.
Nội dung trích xuất từ tài liệu:
Chuyên đề luyện thi Đại học: Một số kĩ năng giải phương trình lượng giácCHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC – GIÁO VIÊN : NGUYỄN MINH NHIÊN – ĐT 0976566882MỘT SỐ KĨ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁCTrong các đề thi đại học những năm gần đây , đa số các bài toán về giải phương trình lượng giácđều rơi vào một trong hai dạng :phương trình đưa về dạng tích và phương trình chứa ẩn ở mẫu .Nhằm giúp các bạn ôn thi có kết quả tốt , bài viết này tôi xin giới thiệu một số kĩ năng quan trọngcủa dạng toán đóI.PHƯƠNG TRÌNH ĐƯA VỀ DẠNG TÍCH1, Phương trình sử dụng các công thức biến đổi lượng giác : công thức biến tích thành tổng, tổng thànhtích , công thức hạ bậc ,…Bài 1. Giải phương trình : sinx+sin2x+sin3x+sin4x+sin5x+sin6x=0 (1)Giải ( 1) � ( sin 6x + sin x ) + ( sin 5x + sin 2x ) + ( sin 4x + sin 3x ) = 0 7x � 5x � x� 3x � 7x 3x � 2sin �cos 2 + cos 2 � cos 2 � 0 � 4sin 2 cos 2 ( 2cosx+1) = 0 � 2 � + = � � � 7x k2π sin =0 x= 2 7 3x π k2π � cos =0 � x= + ; k �Z 2 3 3 2cosx+1 = 0 2π x= + k2π 3*Lưu ý : Khi ghép cặp để ra tổng ( hoặc hiệu ) sin ( hoặc cos ) cần để ý đến góc để sao cho tổng hoặchiệu các góc bằng nhau 2−3 2Bài 2 . Giải phương trình : cos3xcos3 x − sin 3x sin 3 x = (2) 8Giải 1 1 2−3 2 ( 2 ) � cos 2 x ( cos4x + cos2x ) − sin 2 x ( cos2x − cos4x ) = 2 2 8 2−3 2 2−3 2 � cos4x ( cos 2 x + sin 2 x ) + cos2x ( cos 2 x − sin 2 x ) = � cos4x + cos 2 2x = 4 4 2 π kπ � 4cos4x + 2 ( 1 + cos4x ) = 2 − 3 2 � cos4x = � x = � + ( k �Z ) 2 16 2*Lưu ý : Việc khéo léo sử dụng công thức biến tích thành tổng có thể giúp ta tránh được việc sử dụngcông thức nhân 3 2� π �Bài 3 . Giải phương trình : 2cos � − 2x � 3cos4x = 4cos x − 1 (3) + 2 � 4 �Giải 1CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC – GIÁO VIÊN : NGUYỄN MINH NHIÊN – ĐT 0976566882 π ( 3) � 1 + cos � − 4x � � �+ 3cos4x = 4cos 2 x − 1 � sin 4x + 3cos4x = 2 ( 2cos 2 x − 1) �2 � π x= + kπ 1 3 � π� 12 � sin 4x + cos4x = cos2x � cos � − � cos2x � 4x = , k �Z 2 2 � 6� π kπ x= + 36 32,Phương trình sử dụng một số biến đổi khác Việc đưa phương trình về dạng tích điều quan trọng nhất vẫn là làm sao để phát hiện ra nhân tửchung nhanh nhất , sau đây là một số biến đổi có thể giúp ta làm được điều đó �sin 2 x = ( 1 − cos x ) ( 1 + cos x ) , cos 2 x = ( 1 − sin x ) ( 1 + sin x ) cos2x = ( cos x − sin x ) ( cos x + sin x ) 1 + cos 2x + sin 2x = 2 cos x(sin x + cos x) � + sin 2x = ( sin x + cos x ) 2 1 1 − cos 2x + sin 2x = 2sin x(sin x + cos x) 1 − sin 2x = ( sin x − cos x ) 2 sin x + cos x � + tan x = 1 cos x � π� 2 sin � + � sin x + cos x x = � 4�Bài 4 . Giải phương trình : 2sin x(1 + cos2x) + sin 2x = 1 + 2 cos x (4)GiảiCách 1 : ( 4 ) � 2sin x2cos x + 2sin x cos x = 1 + 2 cos x � ( 2 cos x + 1) ( 2sin x cos x − 1) = 0 2 1 cos x = − 2 phần còn lại dành cho bạn đọc sin 2x = 1Cách 2 : ( 4 ) � 2sin xcos2x − (1 − sin 2x) − 2(cos x − sin x) = 0 � 2sin x ( cos x − sin x ) ( cos x + sin x ) − ( cos x − sin x ) − 2 ( cos x − sin x ) = 0 2 � ( cos x − sin x ) ( 2sin x cos x + 2sin 2 x − cos x + sin x − 2 ) = 0 � ( cos x − sin x ) ( 2sin x cos x − 2 cos 2 x − cos x + sin x ) = 0 phần còn lại dành cho bạn đọcBà ...

Tài liệu được xem nhiều: