Danh mục

Đáp án đề thi thử khối A môn: Toán

Số trang: 5      Loại file: pdf      Dung lượng: 169.26 KB      Lượt xem: 14      Lượt tải: 0    
Hoai.2512

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đáp án đề thi thử khối A môn: Toán giúp các bạn củng cố lại kiến thức và thử sức mình trước kỳ thi. Hy vọng nội dung đáp án đề thi sẽ giúp các bạn đạt kết quả cao trong kỳ thi sắp tới.
Nội dung trích xuất từ tài liệu:
Đáp án đề thi thử khối A môn: Toán ĐÁP ÁN ĐỀ THI THỬ KHỐI A Câu Đáp án ĐiểmCâu 1 1. (1,0 điểm) Khảo sát và vẽ đồ thị Với m  1 ta có y  x3  3x2  1  TXĐ: D   0,25  Sự biến thiên x  0  y  1 +) Chiều biến thiên: y  3x2  6 x  3x  x  2   y  0   .  x  2  y  3 Hàm số đồng biến trên các khoảng  ; 0  và  2;   , nghịch biến trên khoảng  0; 2 . +) Cực trị: Hàm số đạt cực đại tại x  0, ycd  1 ; đạt cực tiểu tại x  2, yct  3 . 0,25 +) Giới hạn: lim y  , lim y   x  x  +) Bảng biến thiên x  0 2  y  0  0  1  0,25 y  3  Đồ thị y 1 -1 1 2 3 O x 0,25 -3 2. (1,0 điểm) Tìm m….  Ta có n1   2;1 là VTPT của đường thẳng d . 0,25 y  3x2  2  m  2  x  m  1  y (1)  3  2m  4  m  1   m  2 . Gọi  là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  có dạng: y  y (1)  x  1  y(1) . Do đó n2   m  2;1 là VTPT của  . 0,25     n1 .n2   Theo đề bài ta có: cos n1 , n2  cos 300     n1 . n2 2 3 0,25 2(m  2)  1 3    m2  20m  25  0  m  10  5 3 . 0,25 2 5. (m  2)  1 2Câu 2 3 3 sin x  2 cos x  Giải phương trình : 2  cos x 2 sin x  1   1  x   k2 Điều kiện: sin x    6 , k  . 2 5  x    k2  0,25 6 3 Phương trình  cos x  2 sin x  1  3 sin x  2 cos x  2  4 sin x cos x  2 cos x  2 3 sin x  3  0    2 cos x  2 sin x  1  3  2 sin x  1  0   2 sin x  1 2 cos x  3  0 0,25 1 3   7 0,25  sin x   , cos x   x    2n , x    2m , x   2m 2 2 6 6 6  7 0,25 Kết hợp điều kiện ta có x    k2 , x   k2 , k  . 6 6Câu 3  x3  4 y3  3x2  4 y  2  0 Giải hệ phương trình  . 3x2  4 y2  6 x  1  0  3  x  1  3  x  1  4 y  4 y  0 3 Ta có hệ   . 3 ...

Tài liệu được xem nhiều: