Danh mục

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Môn: TOÁN, khối A

Số trang: 5      Loại file: pdf      Dung lượng: 244.61 KB      Lượt xem: 7      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Môn: TOÁN, khối A (Đáp án - Thang điểm gồm 05 trang)Câu IÝ 1Nội dung Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) y = 2x 3 − 9x 2 + 12x − 4. • TXĐ: . • Sự biến thiên: y = 6 ( x 2 − 3x + 2 ) , y = 0 ⇔ x = 1, x = 2.Điểm 2,000,25Bảng biến thiên:x -∞ y y -∞ + 1 0 1 0 _ 2...
Nội dung trích xuất từ tài liệu:
ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Môn: TOÁN, khối ABỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 ĐỀ CHÍNH THỨC Môn: TOÁN, khối A (Đáp án - Thang điểm gồm 05 trang)Câu Ý Nội dung Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) y = 2x 3 − 9x 2 + 12x − 4. • TXĐ: . 0,25 • Sự biến thiên: y = 6 ( x 2 − 3x + 2 ) , y = 0 ⇔ x = 1, x = 2. Bảng biến thiên: x -∞ 1 2 +∞ y _ 0 + + 0 1 +∞ y 0 -∞ yCĐ = y (1) = 1, y CT = y ( 2 ) = 0. 0,50 • Đồ thị: y 1 O 1 2 x 0,25 −4 2 Tìm m để phương trình có 6 nghiệm phân biệt (1,00 điểm) 3 2 Phương trình đã cho tương đương với: 2 x − 9 x + 12 x − 4 = m − 4 . Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số 3 2 y = 2 x − 9 x + 12 x − 4 với đường thẳng y = m − 4. 0,25 3 2 Hàm số y = 2 x − 9 x + 12 x − 4 là hàm chẵn, nên đồ thị nhận Oy làm trục 0,25 đối xứng. 1/5 Từ đồ thị của hàm số đã cho suy ra đồ thị hàm số: 3 y = 2 x − 9x 2 + 12 x − 4 y 1 y=m−4 −2 −1 O 1 2 x 0,25 −4 Từ đồ thị suy ra phương trình đã cho có 6 nghiệm phân biệt khi và chỉ khi: 0,25 0 < m − 4 < 1 ⇔ 4 < m < 5.II 2,00 1 Giải phương trình lượng giác (1,00 điểm) 2 Điều kiện: sin x ≠ (1) . 2 Phương trình đã cho tương đương với: ⎛ 3 ⎞ 1 2 ( sin 6 x + cos 6 x ) − sin x cos x = 0 ⇔ 2 ⎜1 − sin 2 2x ⎟ − sin 2x = 0 ⎝ 4 ⎠ 2 2 ⇔ 3sin 2x + sin 2x − 4 = 0 0,50 ⇔ sin 2x = 1 π ⇔ x = + kπ (k ∈ ). 0,25 4 5π Do điều kiện (1) nên: x = + 2mπ (m ∈ ). 0,25 4 2 Giải hệ phương trình (1,00 điểm) Điều kiện: x ≥ −1, y ≥ −1, xy ≥ 0. Đặt t = xy ( t ≥ 0 ) . Từ phương trình thứ 0,25 nhất của hệ suy ra: x + y = 3 + t. Bình phương hai vế của phương trình thứ hai ta được: x + y + 2 + 2 xy + x + y + 1 = 16 ( 2) . Thay xy = t 2 , x + y = 3 + t vào (2) ta được: 0,25 2 2 3 + t + 2 + 2 t + 3 + t + 1 = 16 ⇔ 2 t + t + 4 = 11 − t ⎧0 ≤ t ≤ 11 ⎪ ⎧0 ≤ t ≤ 11 ⇔⎨ 2 2 ⇔ ⎨ 2 ⇔ t =3 0,25 ⎪4 ( t + t + 4 ) = (11 − t ) ⎩ ⎩3t + 26t − 105 = 0 Với t = 3 ta có x + y = 6, xy = 9. Suy ra, nghiệm của hệ là (x; y) = (3;3). 0,25 2/5III 2,00 1 Tính khoảng cách giữa hai đường thẳng A C và MN (1,00 điểm) Gọi ( P ) là mặt phẳng chứa A C và song song với MN . Khi đó: 0,25 d ( A C, MN ) = d ( M, ( P ) ) . ⎛1 ⎞ ⎛1 ...

Tài liệu được xem nhiều:

Tài liệu cùng danh mục:

Tài liệu mới: