Danh mục

Đề 12 - Đề thi thử đại học môn toán 2011 0 -

Số trang: 3      Loại file: pdf      Dung lượng: 245.86 KB      Lượt xem: 13      Lượt tải: 0    
Thu Hiền

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề 12 - đề thi thử đại học môn toán 2011 0 -, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề 12 - Đề thi thử đại học môn toán 2011 0 - Trường THPT Phan Châu Trinh ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 ĐÀ NẴNG Môn thi: TOÁN – Khối B Thời gian: 180 phút (không kể thời gian phát đề) Đề số 12I. PHẦN CHUNG (7 điểm)Câu I (2 điểm): Cho hàm số y = x 4 - 2 m 2 x 2 + m 4 + 2 m (1), với m là tham số. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. 2) Chứng minh đồ thị hàm số (1) luôn cắt trục Ox tại ít nhất hai điểm phân biệt, với mọi m < 0 .Câu II (2 điểm): æ pö 2sin ç 2 x + ÷ + 4 sin x = 1 1) Giải phương trình: 6ø è ì2 y - x = m 2) Tìm các giá trị của tham số m sao cho hệ phương trình í có nghiệm duy nhất. î y + xy = 1 ( x - 1)2Câu III (1 điểm): Tìm nguyên hàm của hàm số f ( x ) = . ( 2 x + 1)4Câu IV (1 điểm): Cho khối tứ diện ABCD. Trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho BC = 4 BM , BD = 2 BN và AC = 3 AP . Mặt phẳng (MNP) chia khối tứ diện ABCD làm hai phần. Tính tỉ số thể tích giữa hai phần đó.Câu V (1 điểm): Với mọi số thực dương x; y; z thỏa điều kiện x + y + z £ 1 . Tìm giá trị nhỏ nhất của biểu thức: æ 1 1 1ö P = x + y + z + 2ç + + ÷ . è x y zøII. PHẦN TỰ CHỌN (3 điểm)1. Theo chương trình chuẩnCâu VI.a (2 điểm): 2 x log4 x = 8log2 x 1) Giải phương trình: . x -1 2) Viết phương trình các đường thẳng cắt đồ thị hàm số y = tại hai điểm phân biệt sao cho hoành độ và tung x -2 độ của mỗi điểm đều là các số nguyên. ()Câu VII.a (1 điểm): Trong mặt phẳ ng với hệ tọa độ Oxy, cho đường thẳ ng d : 2 x - y - 4 = 0 . Lập phương trình đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng (d).2. Theo chương trình nâng caoCâu VI.b (2 điểm): 2 (1 + log 2 x ) log 4 x + log8 x < 0 1) Giải bất phương trình: 2) Tìm m để đồ thị hàm số y = x 3 + ( m - 5 ) x 2 - 5mx có điểm uốn ở trên đồ thị hàm số y = x 3 . ( )( )( )Câu VII.b (1 điểm): Trong không gian với hệ toạ độ Oxyz, cho các điểm A -1;3; 5 , B -4;3; 2 , C 0; 2;1 . Tìm tọa độ tâm đường tròn ngoạ i tiếp tam giác ABC. ============================Trần Sĩ Tùng Hướng dẫn:I. PHẦN CHUNGCâu I: 2) Phương trình HĐGĐ của đồ thị (1) và trục Ox: x 4 - 2m 2 x 2 + m 4 + 2 m = 0 (*). ( ) 2 Đặt t = x t ³ 0 , ta có : t 2 - 2 m 2 t + m 4 + 2 m = 0 (**) Ta có : D = -2 m > 0 và S = 2 m2 > 0 với mọi m < 0 . Nên PT (**) có nghiệm dương. Þ PT (*) có ít nhất 2 nghiệm phân biệt (đpcm).Câu II: 1) PT Û 3 sin 2 x + cos 2 x + 4sin x - 1 = 0 Û 2 3 sin x cos x - 2sin 2 x + 4sin x = 0 . éæ pö 5p é ( ) êsin ç x - ÷ = 1 Û ê x = ésin x - 3 cos x = 2 + k 2p Û 2 3 cos x - sin x + 2 sin x = 0 Û ê Û 3ø 6 êè ësin x = 0 ê x = kp ê x = kp ë ë ìy £ 1 ì2 y - x = m (1) ï ...

Tài liệu được xem nhiều: