ĐỀ TÀI : TÌM HIỂU VỀ DẠNG TOÀN PHƯƠNG
Số trang: 15
Loại file: ppt
Dung lượng: 1.11 MB
Lượt xem: 24
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nhằm
trang bị đầy đủ kiến thức cho tất cả các bạn
sinh viên về phần Đại số tuyến tính. Đặc biệt là những
kỹ năng cơ bản để học tốt những bài tập dạng toàn
phương,nhằm chuẩn bị cho tất cả các bạn sinh viên
trước kỳ kiểm tra cuối kỳ này. Đó cũng chính là một
trong những lý do, mà nhóm 13 chúng tôi làm đề tài tiểu
luận với việc “cung cấp kiến thức cho các bạn hiểu rõ”.
Chúng tôi chia bài tiểu luận thành những mục khác
nhau, với những mục riêng của từng phần. Trong đó có:
1.Tóm tắt lý thuyết và Giải...
Nội dung trích xuất từ tài liệu:
ĐỀ TÀI : TÌM HIỂU VỀ DẠNG TOÀN PHƯƠNG BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THỰC PHẨM TP.HỒ CHÍ MINH ĐỀ TÀI : TÌM HIỂU VỀ DẠNG TOÀN PHƯƠNG GVHD : NGUYỄN TRƯỜNG SINH NHÓM 13 : DANH SÁCH THÀNH Công Việc : V IÊN o Làm PowerPoint •Phạm Xuân Khánh o Hoàn thiện tài liệu •Chắng Gia Đức o Tìm kiếm tài liệu •Trần Thanh Phong o Tìm kiếm tài liệu •Phạm Thành Công o Thuyết trình bài •Lưu Hải Triều giảng •Nguyễn Thanh Vương o Xây dựng đề tài GIỚI THIỆU Phần mở đầu : DẠNG TOÀN PHƯƠNG !.. Nhằm trang bị đầy đủ kiến thức cho tất cả các bạn sinh viên về phần Đại số tuyến tính. Đặc biệt là những kỹ năng cơ bản để học tốt những bài tập dạng toàn phương,nhằm chuẩn bị cho tất cả các bạn sinh viên trước kỳ kiểm tra cuối kỳ này. Đó cũng chính là một trong những lý do, mà nhóm 13 chúng tôi làm đề tài tiểu luận với việc “cung cấp kiến thức cho các bạn hiểu rõ”. Chúng tôi chia bài tiểu luận thành những mục khác nhau, với những mục riêng của từng phần. Trong đó có: 1.Tóm tắt lý thuyết và Giải bài tập ví dụ trong dạng toàn phương. Ngoài ra chúng tôi còn đưa thêm một số bài liên quan đến dạng toàn phương ,nhằm góp cho tất cả các bạn hiểu rõ hơn về bài tập đó… 2. Tuy nhiên chắc chắn chúng tôi sẽ không tránh khỏi những thiếu sót. Nhóm 13 rất mong nhận được những ý kiến đóng góp của tất cả các thầy cô và các bạn sinh viên ở trong trường cũng như ngoài trường, để lần sau nhóm 13 viết tiểu luận đạt kết quả cao hơn. Nhóm 13 xin chân thành cảm ơn thầy Nguyễn Trường Sinh, Trường Đại học Công Nghiệp Thực phẩm Thành phố Hồ Chí Minh đã giúp nhóm 13 hoàn thành bài tiểu luận này. Những chỉ dẫn và đóng góp của các bạn xin gửi về Nhóm 13 qua Email:luclamkhanh@gmail.com. Xin chân thành cảm ơn!... I. Khái niệm dạng toàn phương 1. Định nghĩa : - Cho V là không gian vector n chiều trên R, hàm : ω xác định như sau, với mỗi : V R x = ( x1 , x2 ,..., xn ) V ω x ) = a11 x1 +2a12 x1 x2 +2a13 x1 x3 +... +2a1n x1 xn 2 ( +a22 x2 +2a23 x2 x3 +... +2a2 n x2 xn 2 +a33 x3 +... +2a3n x3 xn 2 .................... +an n xn Được gọi là dạng toàn phương trên 2 V. Chứng minh định nghĩa : Dạng toàn phương V. ω( x) = a11 x12 + 2a12 x1 x2 + 2a13 x1 x3 + ... + 2a1n x1 xn + a x + 2a23 x2 x3 + ... + 2a2 n x2 xn 2 22 2 + a x + ... + 2a3 n x3 xn 2 33 3 .................... khi đó, sẽ có dạng ma trận + an n x 2 n �11 a12 ... a1n � a sau: � � a12 a22 ... a2 n � Aω = � � ... ... � ... ... � � a a2 n ... an n � �1n Ví dụ : Cho dạng toàn phương: ω :R R, x = ( x1 , x2 , x3 ) 3 Ta có : ω ( x) = 2 x 2 + 4 x x − 6 x x − x 2 + 2 x x + 8 x 2 1 12 13 2 23 3 Ta viết lại : = 2 x + 2 x1 x2 + 2 x2 x1 − 3x1 x3 − 3x3 x1 − x + x2 x3 + x3 x2 + 8 x 2 2 2 1 2 3 Do đó ma trận có dạng toàn phương là : 2 −3 � 2 � � � Aω = �2 −1 1 � �3 � − 1 8� � II. Dạng chính tắc của toàn phương : Khi ma trận của dạng toàn phương là ma trận chéo a11 0 0 ... 0 a22 ... 0 ... ... ... ... 0 0 0 an n ω ( x) = a x + a x + ... + a x . 2 2 2 Hay 11 1 22 2 nn n Thì ta gọi đó là dạng chính tắc của dạng toàn phương. Ví dụ minh họa: � 0 0� 2 � � � −1 0 � 2 x − x + 8x 2 2 2 K(x)= 0 ma trận tương ứng 1 2 3 � 0 8� 0 � � � 0 0� 1 � � x + 5x 2 2 L(x)= � 0 0� 0 ma trậ ...
Nội dung trích xuất từ tài liệu:
ĐỀ TÀI : TÌM HIỂU VỀ DẠNG TOÀN PHƯƠNG BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THỰC PHẨM TP.HỒ CHÍ MINH ĐỀ TÀI : TÌM HIỂU VỀ DẠNG TOÀN PHƯƠNG GVHD : NGUYỄN TRƯỜNG SINH NHÓM 13 : DANH SÁCH THÀNH Công Việc : V IÊN o Làm PowerPoint •Phạm Xuân Khánh o Hoàn thiện tài liệu •Chắng Gia Đức o Tìm kiếm tài liệu •Trần Thanh Phong o Tìm kiếm tài liệu •Phạm Thành Công o Thuyết trình bài •Lưu Hải Triều giảng •Nguyễn Thanh Vương o Xây dựng đề tài GIỚI THIỆU Phần mở đầu : DẠNG TOÀN PHƯƠNG !.. Nhằm trang bị đầy đủ kiến thức cho tất cả các bạn sinh viên về phần Đại số tuyến tính. Đặc biệt là những kỹ năng cơ bản để học tốt những bài tập dạng toàn phương,nhằm chuẩn bị cho tất cả các bạn sinh viên trước kỳ kiểm tra cuối kỳ này. Đó cũng chính là một trong những lý do, mà nhóm 13 chúng tôi làm đề tài tiểu luận với việc “cung cấp kiến thức cho các bạn hiểu rõ”. Chúng tôi chia bài tiểu luận thành những mục khác nhau, với những mục riêng của từng phần. Trong đó có: 1.Tóm tắt lý thuyết và Giải bài tập ví dụ trong dạng toàn phương. Ngoài ra chúng tôi còn đưa thêm một số bài liên quan đến dạng toàn phương ,nhằm góp cho tất cả các bạn hiểu rõ hơn về bài tập đó… 2. Tuy nhiên chắc chắn chúng tôi sẽ không tránh khỏi những thiếu sót. Nhóm 13 rất mong nhận được những ý kiến đóng góp của tất cả các thầy cô và các bạn sinh viên ở trong trường cũng như ngoài trường, để lần sau nhóm 13 viết tiểu luận đạt kết quả cao hơn. Nhóm 13 xin chân thành cảm ơn thầy Nguyễn Trường Sinh, Trường Đại học Công Nghiệp Thực phẩm Thành phố Hồ Chí Minh đã giúp nhóm 13 hoàn thành bài tiểu luận này. Những chỉ dẫn và đóng góp của các bạn xin gửi về Nhóm 13 qua Email:luclamkhanh@gmail.com. Xin chân thành cảm ơn!... I. Khái niệm dạng toàn phương 1. Định nghĩa : - Cho V là không gian vector n chiều trên R, hàm : ω xác định như sau, với mỗi : V R x = ( x1 , x2 ,..., xn ) V ω x ) = a11 x1 +2a12 x1 x2 +2a13 x1 x3 +... +2a1n x1 xn 2 ( +a22 x2 +2a23 x2 x3 +... +2a2 n x2 xn 2 +a33 x3 +... +2a3n x3 xn 2 .................... +an n xn Được gọi là dạng toàn phương trên 2 V. Chứng minh định nghĩa : Dạng toàn phương V. ω( x) = a11 x12 + 2a12 x1 x2 + 2a13 x1 x3 + ... + 2a1n x1 xn + a x + 2a23 x2 x3 + ... + 2a2 n x2 xn 2 22 2 + a x + ... + 2a3 n x3 xn 2 33 3 .................... khi đó, sẽ có dạng ma trận + an n x 2 n �11 a12 ... a1n � a sau: � � a12 a22 ... a2 n � Aω = � � ... ... � ... ... � � a a2 n ... an n � �1n Ví dụ : Cho dạng toàn phương: ω :R R, x = ( x1 , x2 , x3 ) 3 Ta có : ω ( x) = 2 x 2 + 4 x x − 6 x x − x 2 + 2 x x + 8 x 2 1 12 13 2 23 3 Ta viết lại : = 2 x + 2 x1 x2 + 2 x2 x1 − 3x1 x3 − 3x3 x1 − x + x2 x3 + x3 x2 + 8 x 2 2 2 1 2 3 Do đó ma trận có dạng toàn phương là : 2 −3 � 2 � � � Aω = �2 −1 1 � �3 � − 1 8� � II. Dạng chính tắc của toàn phương : Khi ma trận của dạng toàn phương là ma trận chéo a11 0 0 ... 0 a22 ... 0 ... ... ... ... 0 0 0 an n ω ( x) = a x + a x + ... + a x . 2 2 2 Hay 11 1 22 2 nn n Thì ta gọi đó là dạng chính tắc của dạng toàn phương. Ví dụ minh họa: � 0 0� 2 � � � −1 0 � 2 x − x + 8x 2 2 2 K(x)= 0 ma trận tương ứng 1 2 3 � 0 8� 0 � � � 0 0� 1 � � x + 5x 2 2 L(x)= � 0 0� 0 ma trậ ...
Tìm kiếm theo từ khóa liên quan:
luật quán tính Toán đại cương Toán cao cấp tài liệu môn toán giáo trình đại học Tập hợp ánh sáng dạng toàn phươngGợi ý tài liệu liên quan:
-
Giáo trình phân tích một số loại nghiệp vụ mới trong kinh doanh ngân hàng quản lý ngân quỹ p5
7 trang 468 0 0 -
MARKETING VÀ QUÁ TRÌNH KIỂM TRA THỰC HIỆN MARKETING
6 trang 279 0 0 -
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 201 0 0 -
BÀI GIẢNG KINH TẾ CHÍNH TRỊ MÁC - LÊNIN - TS. NGUYỄN VĂN LỊCH - 5
23 trang 183 0 0 -
QUY CHẾ THU THẬP, CẬP NHẬT SỬ DỤNG CƠ SỞ DỮ LIỆU DANH MỤC HÀNG HÓA BIỂU THUẾ
15 trang 181 1 0 -
Giáo trình chứng khoán cổ phiếu và thị trường (Hà Hưng Quốc Ph. D.) - 4
41 trang 175 0 0 -
Giáo trình hướng dẫn phân tích các thao tác cơ bản trong computer management p6
5 trang 167 0 0 -
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG - NGÂN HÀNG ĐỀ THI HẾT HỌC PHẦN HỌC PHẦN: TOÁN KINH TẾ
9 trang 155 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 151 0 0 -
BÀI GIẢNG LÝ THUYẾT MẠCH THS. NGUYỄN QUỐC DINH - 1
30 trang 151 0 0