Danh mục

Đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 cấp trường năm 2020-2021 - Trường THPT chuyên Trần Phú, Hải Phòng

Số trang: 1      Loại file: pdf      Dung lượng: 390.17 KB      Lượt xem: 4      Lượt tải: 0    
Hoai.2512

Xem trước 1 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nhằm đánh giá lại thực lực học tập của các em học sinh trước khi tham dự kì thi HSG sắp tới. Mời các em học sinh và giáo viên cùng tham khảo Đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 cấp trường năm 2020-2021 - Trường THPT chuyên Trần Phú, Hải Phòng để tích lũy kinh nghiệm làm bài trước kì thi. Chúc các em thi tốt!
Nội dung trích xuất từ tài liệu:
Đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 cấp trường năm 2020-2021 - Trường THPT chuyên Trần Phú, Hải Phòng SỞ GD&ĐT HẢI PHÒNG KÌ THI CHỌN ĐỘI TUYỂN CẤP TRƯỜNGTRƯỜNG THPT CHUYÊN TRẦN PHÚ NĂM HỌC 2020 – 2021 Môn thi: TOÁN ĐỀ THI CHÍNH THỨC Thời gian làm bài: 180 phút (không kể thời gian giao đề) (Đề thi gồm 01 trang) Ngày thi: 12/09/2020Bài 1. (4,0 điểm)Cho dãy số  un  được xác định như sau: u1  4, u2  5  . un  2  un 1  2 un , n   *Chứng minh dãy  un  có giới hạn hữu hạn, tìm giới hạn đó.Bài 2. (4,0 điểm)Xác định tất cả các đa thức hệ số nguyên nhận 1  2021 làm nghiệm.Bài 3. (4,0 điểm)Cho tam giác ABC nội tiếp đường tròn  O  , D là điểm chính giữa cung BC không chứa A, E là điểm đốixứng với B qua AD, BE cắt  O  tại F khác B. Điểm P di chuyển trên cạnh AC. BP cắt  O  tại Q khác B.Đường thẳng qua C song song với AQ cắt FD tại điểm G.a) Gọi H là giao điểm của EG và BC. Chứng minh rằng B, P, E, H cùng thuộc một đường tròn, gọiđường tròn này là  K  .b)  K  cắt  O  tại L khác B. Chứng minh rằng LP luôn đi qua một điểm S cố định khi P di chuyển.c) Gọi T là trung điểm PE. Chứng minh rằng đường thẳng qua T song song với LS đi qua trung điểm củaAF.Bài 4. (4,0 điểm)Có bao nhiêu số nguyên dương n không vượt quá 10 2020 thỏa mãn 2n  2021  mod 52020  ?Bài 5. (4,0 điểm)Xét X  {1; 2;3;...; 2020} là tập hợp 2020 số nguyên dương đầu tiên. Với mỗi song ánh f : X  X , kí 2020hiệu S  f    k  4 f  k  . Hỏi có bao nhiêu song ánh f : X  X thỏa mãn S f lớn nhất? k 1 -------------------- HẾT -------------------- Giải chi tiết trên kênh Youtube: Vietjack Toán Lý hóa (Bạn vào Youtube -> Tìm kiếm cụm từ: Vietjack Toán Lý Hóa -> ra kết quả tìm kiếm) Hoặc bạn copy trực tiếp Link kênh : https://www.youtube.com/channel/UCGo1lPIGoGvMUHK7m4TwL3A

Tài liệu được xem nhiều: