Danh mục

Đề thi chọn HSG cấp tỉnh môn Toán lớp 11 năm 2018-2019 có đáp án - Sở GD&ĐT Hà Tĩnh

Số trang: 5      Loại file: pdf      Dung lượng: 819.71 KB      Lượt xem: 9      Lượt tải: 0    
Hoai.2512

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Với Đề thi chọn HSG cấp tỉnh môn Toán lớp 11 năm 2018-2019 có đáp án - Sở GD&ĐT Hà Tĩnh được chia sẻ dưới đây, các bạn học sinh được ôn tập, củng cố lại kiến thức đã học, rèn luyện và nâng cao kỹ năng giải bài tập để chuẩn bị cho kì thi HSG sắp tới đạt được kết quả mong muốn. Mời các bạn tham khảo đề thi!
Nội dung trích xuất từ tài liệu:
Đề thi chọn HSG cấp tỉnh môn Toán lớp 11 năm 2018-2019 có đáp án - Sở GD&ĐT Hà TĩnhCâu 1. Xét phương trình: ( s inx − cosx )( sin 2 x − 3) − sin 2 x − cos2 x + 1 = 0 (1) 2sin x − 2  π  x ≠ + k 2π 2  4ĐK sin x ≠ ⇔ (k , l ∈ Z ) 2  x ≠ 3π + l 2π  4Khi đó phương trình (1) ⇔ ( s inx − cosx )( sin 2 x − 3) − sin 2 x − cos2 x + 1 = 0⇔ ( s inx − cosx )( sin 2 x − 3) − 2sin x.cosx + 2sin 2 x = 0⇔ ( s inx − cosx )( sin 2 x − 3) + 2sin x(s inx − cosx) = 0 s inx − cosx = 0 (2)⇔ ( s inx − cosx )( sin 2 x + 2sin x − 3 ) = 0 ⇔  sin 2 x + 2 sin x − 3 = 0 (3) π π 5πPT (2) ⇔ sin( x − ) = 0 ⇔ x = + kπ , đối chiếu điều kiện ta có x = + k 2π (k ∈ ℤ) . 4 4 4 sin2x =1PT (3) ⇔ sin2x +2sin x = 3 ⇔  (vn) sin x = 1 5πVậy x = + k 2π (k ∈ ℤ) . 4 5π 5x ∈ (−2018π ; 2019π ) ⇔ −2018π < + k 2π < 2019π ⇔ −2018 < + 2k < 2019 4 4Do k ∈ ℤ nên k ∈ { − 1009, − 1008,....,1008} suy ra có 2018 nghiệm.Câu 1b. Tính lim ( x + 2 x + 1 − 4 x + 2 x + 3 + mx ) x →−∞ 3 3 2 2Nếu m = −3 thì lim ( x + 2 x + 1 − 4 x + 2 x + 3 + mx ) 3 3 2 2 x →−∞= lim ( ( x + 2 x + 1 − x) − ( 4 x + 2 x + 3 + 2 x) ) 3 3 2 2 x →−∞Ta có lim ( x + 2 x + 1 − x ) = lim 2x + 1 2 2 3 3 2 = x →−∞ ( x + 2 x + 1) + x ( x + 2 x + 1) x →−∞ 3 3 2 2 3 3 2 2 + x2 3limx →−∞ ( 4 x 2 + 2 x + 3 + 2 x = lim )4 x2 + 2 x + 3 − 2 x x →−∞ 2x + 3 = −1 2Suy ra lim x →−∞ ( 3 x 3 + 2 x 2 + 1 − 4 x 2 + 2 x + 3 + mx = 7 6 )Nếu m < −3 thì lim x →−∞ ( 3 x 3 + 2 x 2 + 1 − 4 x 2 + 2 x + 3 + mx ) (= lim ( 3 x3 + 2 x 2 + 1 − x) − ( 4 x 2 + 2 x + 3 + 2 x) + (m + 3) x = +∞ x →−∞ )Nếu m > −3 thì lim x →−∞ ( 3 x 3 + 2 x 2 + 1 − 4 x 2 + 2 x + 3 + mx ) (= lim ( 3 x3 + 2 x 2 + 1 − x) − ( 4 x 2 + 2 x + 3 + 2 x) + (m + 3) x = −∞ x →−∞ ) Cn ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: