Đề thi có giải môn toán cao cấp A1
Số trang: 21
Loại file: doc
Dung lượng: 631.50 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu tham khảo Đề thi môn toán cao cấp A1 kèm các phương pháp giải khác nhau, gửi đến các bạn độc giả tham khảo có thể củng cố kiến thức và nâng cao kỹ năng học tập toán cao cấp. Chúc các bạn học tốt nhé
Nội dung trích xuất từ tài liệu:
Đề thi có giải môn toán cao cấp A1 ĐỀ SỐ 3 2 Giải phương trình y − y = x 2e x . ' Câu I. x Đây là pt vi phân tuyến tính cấp 1 − p ( x ) dx dx + C ⇒ y=e ∫ q ( x )e ∫ p ( x ) dx ∫ ∫ x dx 2 x ∫ − x dx 2 2 ∫ y=e dx + C xee [ ] = e 2 ln x ∫ x 2 e x e −2 ln x dx + C = x 2 .e x + C Giải hệ pt bằng phương pháp TR, VTR hoặc khử Câu II. x'1 (t ) = 5 x1 − 3 x2 + e 2 t (1) x' 2 (t ) = −x1 + 3 x2 ( 2) Lấy pt (1) + pt (2) x '1 + x 2 = 4 x1 + e 2t (*) ' Đạo hàm 2 vế pt (2) ta được: x1 = 3 x2 − x2 ' ' Thay vào pt (*) 3 x 2 − x 2 + x 2 = 4( 3x 2 − x 2 ) + e 2t ' ' ' ⇔ − x2 + 8 x2 − 12 x2 = e 2t ' 1 ⇒ x2 = C1e 6t + C 2 e 2t + xe 2t 2 Thay vào pt (2) ta được: 7 2t x1 = C1e 6t + C 2 e 2t + e t + xe 2 1 + tan x − 1 − tan x Tính giới hạn lim Câu III. . x x →0 1 + tan x − 1 − tan x lim x x →0 1 + tan x − 1 − tan x 1 + tan x − 1 + tan x 2 tan x = lim = lim = lim =1 ( ) x →0 x 1 + tan x + 1 − tan x x x.2 x →0 x →0 −1 / 4 dx Tính tích phân I = ∫ Câu IV. . −1/ 2 x 2 x + 1 Đặ t t = 2x + 1 ⇒ t 2 = 2x + 1 ⇔ tdt = dx −1 −1 x 2 4 t 0 1 2 1 1 1 1 [ (t + 1) − (t − 1)] dt 2 2 2 2 tdt 2dt 2dt ∫ ∫ ∫ ∫ ⇒I= = = = (t − 1)(t + 1) (t − 1)(t + 1) t 2 −1 t 2 −1 .t 0 0 0 0 2 1 1− 1 ∫ ( ln t −1 −ln t +1) ...
Nội dung trích xuất từ tài liệu:
Đề thi có giải môn toán cao cấp A1 ĐỀ SỐ 3 2 Giải phương trình y − y = x 2e x . ' Câu I. x Đây là pt vi phân tuyến tính cấp 1 − p ( x ) dx dx + C ⇒ y=e ∫ q ( x )e ∫ p ( x ) dx ∫ ∫ x dx 2 x ∫ − x dx 2 2 ∫ y=e dx + C xee [ ] = e 2 ln x ∫ x 2 e x e −2 ln x dx + C = x 2 .e x + C Giải hệ pt bằng phương pháp TR, VTR hoặc khử Câu II. x'1 (t ) = 5 x1 − 3 x2 + e 2 t (1) x' 2 (t ) = −x1 + 3 x2 ( 2) Lấy pt (1) + pt (2) x '1 + x 2 = 4 x1 + e 2t (*) ' Đạo hàm 2 vế pt (2) ta được: x1 = 3 x2 − x2 ' ' Thay vào pt (*) 3 x 2 − x 2 + x 2 = 4( 3x 2 − x 2 ) + e 2t ' ' ' ⇔ − x2 + 8 x2 − 12 x2 = e 2t ' 1 ⇒ x2 = C1e 6t + C 2 e 2t + xe 2t 2 Thay vào pt (2) ta được: 7 2t x1 = C1e 6t + C 2 e 2t + e t + xe 2 1 + tan x − 1 − tan x Tính giới hạn lim Câu III. . x x →0 1 + tan x − 1 − tan x lim x x →0 1 + tan x − 1 − tan x 1 + tan x − 1 + tan x 2 tan x = lim = lim = lim =1 ( ) x →0 x 1 + tan x + 1 − tan x x x.2 x →0 x →0 −1 / 4 dx Tính tích phân I = ∫ Câu IV. . −1/ 2 x 2 x + 1 Đặ t t = 2x + 1 ⇒ t 2 = 2x + 1 ⇔ tdt = dx −1 −1 x 2 4 t 0 1 2 1 1 1 1 [ (t + 1) − (t − 1)] dt 2 2 2 2 tdt 2dt 2dt ∫ ∫ ∫ ∫ ⇒I= = = = (t − 1)(t + 1) (t − 1)(t + 1) t 2 −1 t 2 −1 .t 0 0 0 0 2 1 1− 1 ∫ ( ln t −1 −ln t +1) ...
Tìm kiếm theo từ khóa liên quan:
Toán cao cấp Bài tập toán cao cấp Đề thi toán cao cấp Giáo trình toán cao cấp Tài liệu toán cao cấp Bài giảng toán cao cấpGợi ý tài liệu liên quan:
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 209 0 0 -
2 Đề Thi Môn Xác Suất Thống Kê- Học Viện Ngân Hàng
5 trang 178 5 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 157 0 0 -
Bài giảng Toán cao cấp C1: Chương 1 - Phan Trung Hiếu
11 trang 149 0 0 -
4 trang 101 0 0
-
Một số đề thi nhập môn tài chính tiền tệ
3 trang 96 0 0 -
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 trang 90 0 0 -
Bài giảng Toán cao cấp - Chương 1: Các khái niệm cơ bản của lý thuyết xác suất
16 trang 77 0 0 -
Giáo trình Toán kinh tế: Phần 2
60 trang 65 0 0 -
BÀI TẬP TỔNG HỢP - QUY HOẠCH TUYẾN TÍNH
3 trang 62 0 0