Danh mục

Đề thi có giải môn toán cao cấp A1

Số trang: 21      Loại file: doc      Dung lượng: 631.50 KB      Lượt xem: 13      Lượt tải: 0    
Hoai.2512

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu tham khảo Đề thi môn toán cao cấp A1 kèm các phương pháp giải khác nhau, gửi đến các bạn độc giả tham khảo có thể củng cố kiến thức và nâng cao kỹ năng học tập toán cao cấp. Chúc các bạn học tốt nhé
Nội dung trích xuất từ tài liệu:
Đề thi có giải môn toán cao cấp A1 ĐỀ SỐ 3 2 Giải phương trình y − y = x 2e x . ' Câu I. x Đây là pt vi phân tuyến tính cấp 1 − p ( x ) dx  dx + C  ⇒ y=e ∫ q ( x )e ∫ p ( x ) dx ∫     ∫ x dx  2 x ∫ − x dx  2 2 ∫ y=e dx + C  xee   [ ] = e 2 ln x ∫ x 2 e x e −2 ln x dx + C = x 2 .e x + C Giải hệ pt bằng phương pháp TR, VTR hoặc khử Câu II. x'1 (t ) = 5 x1 − 3 x2 + e 2 t (1)  x' 2 (t ) = −x1 + 3 x2 ( 2) Lấy pt (1) + pt (2) x '1 + x 2 = 4 x1 + e 2t (*) ' Đạo hàm 2 vế pt (2) ta được: x1 = 3 x2 − x2 ' ' Thay vào pt (*) 3 x 2 − x 2 + x 2 = 4( 3x 2 − x 2 ) + e 2t ' ' ' ⇔ − x2 + 8 x2 − 12 x2 = e 2t ' 1 ⇒ x2 = C1e 6t + C 2 e 2t + xe 2t 2 Thay vào pt (2) ta được: 7 2t x1 = C1e 6t + C 2 e 2t + e t + xe 2 1 + tan x − 1 − tan x Tính giới hạn lim Câu III. . x x →0 1 + tan x − 1 − tan x lim x x →0 1 + tan x − 1 − tan x 1 + tan x − 1 + tan x 2 tan x = lim = lim = lim =1 ( ) x →0 x 1 + tan x + 1 − tan x x x.2 x →0 x →0 −1 / 4 dx Tính tích phân I = ∫ Câu IV. . −1/ 2 x 2 x + 1 Đặ t t = 2x + 1 ⇒ t 2 = 2x + 1 ⇔ tdt = dx −1 −1 x 2 4 t 0 1 2 1 1 1 1 [ (t + 1) − (t − 1)] dt 2 2 2 2 tdt 2dt 2dt ∫ ∫ ∫ ∫ ⇒I= = = = (t − 1)(t + 1) (t − 1)(t + 1) t 2 −1 t 2 −1 .t 0 0 0 0 2 1 1− 1 ∫ ( ln t −1 −ln t +1) ...

Tài liệu được xem nhiều: