Thông tin tài liệu:
Tham khảo tài liệu: Đề thi đại học môn Toán khối A năm 2009 - đề tham khảo của Bộ Giáo dục có đáp án, tài liệu dành cho các bạn học sinh ôn thi đại học, cao đẳng. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Đề thi đại học môn Toán khối A năm 2009 - Đề tham khảo của Bộ giáo dục B GIÁO D C VÀ ĐÀO T O Đ THI TUY N SINH Đ I H C, CAO Đ NG NĂM 2009 Đ THAM KH O Môn thi : TOÁN, kh i A Thi th th năm hàng tu n.I. PH N CHUNG CHO T T C CÁC THÍ SINH (7,0 đi m)Câu I. (2,0 đi m) Cho hàm s y = − x3 − 3x2 + mx + 4, trong đó m là tham s th c. 1. Kh o sát s bi n thiên và v đ th c a hàm s đã cho, v i m = 0. 2. Tìm t t c các giá tr c a tham s m đ hàm s đã cho ngh ch bi n trên kho ng (0 ; + ∞).Câu II. (2,0 đi m) 1. Gi i phương trình: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Gi i phương trình: log 2 (x + 2) + log 4 (x − 5) 2 + log 1 8 = 0 2Câu III. (1,0 đi m) Tính di n tích hình ph ng gi i h n b i đ th hàm s y = e x + 1 , tr c hoành và hai đư ng th ng x = ln3, x = ln8.Câu VI. (1,0 đi m) Cho hình chóp S.ABCD có đáy ABCD là hình vuông c nh a, SA = SB = a, m t ph ng (SAB) vuông góc v i m t ph ng (ABCD). Tính bán kính m t c u ngo i ti p hình chóp S.ABCD.Câu V. (1,0 đi m) Xét các s th c dương x, y, z th a mãn đi u ki n x + y + z = 1. x 2 (y + z) y 2 (z + x) z 2 (x + y) Tìm giá tr nh nh t c a bi u th c: P = + + yz zx xzII. PH N RIÊNG (3,0 đi m)Thí sinh ch đư c ch n làm m t trong hai ph n (ph n 1 ho c ph n 2)1. Theo chương trình Chu n:Câu VIa. (2,0 đi m) 1. Trong m t ph ng v i h t a đ Oxy, cho đư ng tròn (C) có phương trình: x2 + y2 – 6x + 5 = 0. Tìm đi m M thu c tr c tung sao cho qua M k đư c hai ti p tuy n v i (C) mà góc gi a hai ti p tuy n đó b ng 600 . x = 1 + 2t 2. Trong không gian v i h t a đ Oxyz, cho đi m M(2 ; 1 ; 0) và đư ng th ng d có phương trình: y = −1 + t z = − t Vi t phương trình tham s c a đư ng th ng đi qua đi m M, c t và vuông góc v i đư ng th ng d.Câu VIIa. (1,0 đi m) Tìm h s c a x2 trong khai tri n thành đa th c c a bi u th c P = (x2 + x – 1) 62. Theo chương trình Nâng caoCâu VIb. (2,0 đi m) 1. Trong m t ph ng v i h t a đ Oxy, cho đư ng tròn (C) có phương trình: x2 + y2 – 6x + 5 = 0. Tìm đi m M thu c tr c tung sao cho qua M k đư c hai ti p tuy n v i (C) mà góc gi a hai ti p tuy n đó b ng 600. 2. Trong không gian v i h t a đ Oxyz, cho đi m M(2 ; 1 ; 0) và đư ng th ng d có phương trình: x −1 y + 1 z = = . 2 1 −1 Vi t phương trình chính t c c a đư ng th ng đi qua đi m M, c t và vuông góc v i đư ng th ng d.Câu VIIb. (1,0 đi m) Tìm h s c a x3 trong khai tri n thành đa th c c a bi u th c P = (x2 + x – 1)5 ……………………H t……………………Thí sinh không đư c s d ng tài li u, cán b coi thi không gi i thích gì thêm.H và tên thí sinh: ………………………………………… S báo danh: …………………… 1 ĐÁP ÁN – THANG ĐI MCâu Đáp án Đi m I 1. (1,25 đi m) (2,0 V i m = 0, ta có hàm s y = – x3 – 3x2 + 4đi m) T p xác đ nh: D = ¡ S bi n thiên: x = −2 • Chi u bi n thiên: y’ = – 3x2 – 6x, y’ = 0 ⇔ x = 0 0,50 x < −2 y’ < 0 ⇔ x > 0 y’ > 0 ⇔ – 2 < x < 0 Do đó: + Hàm s ngh ch bi n trên m i kho ng (− ∞ ; − 2) và (0 ; + ∞) + Hàm s đ ng bi n trên kho ng (− 2 ; 0) • C c tr : + Hàm s y đ t c c ti u t i x = – 2 và yCT = y(–2) = 0; + Hàm s y đ t c c đ i t i x = 0 và yCĐ = y(0) = 4. 0,25 • Gi i h n: lim = +∞ , ...