Danh mục

Đề thi kết thúc môn Đại số tuyến tính (Đề số 209) - ĐH Kinh tế

Số trang: 3      Loại file: pdf      Dung lượng: 300.70 KB      Lượt xem: 19      Lượt tải: 0    
Hoai.2512

Phí tải xuống: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Cùng tham khảo đề thi kết thúc môn Đại số tuyến tính của ĐH Kinh tế với mã đề số 209 dưới đây, đề thi có cấu trúc gồm 2 phần: Phần 1 gồm 14 câu hỏi trắc nghiệm, phần 2 gồm 2 câu hỏi bài tập tự luận. Hãy thử sức với đề thi này và đánh giá khả năng của mình nhé.
Nội dung trích xuất từ tài liệu:
Đề thi kết thúc môn Đại số tuyến tính (Đề số 209) - ĐH Kinh tế TRƯỜNG ĐẠI HỌC KINH TẾ TPHCM ĐỀ THI KẾT THÚC HOC PHẦN K36 KHOA TOÁN THỐNG KÊ MÔN ĐẠI SỐ TUYẾN TÍNH Thời gian làm bài: 90 phút Mã đề thi 209 Họ và tên :...................................................................... Ngày sinh :..............................MSSV :.......................... CHỮ KÝ GT1 CHỮ KÝ GT2 Lớp :..................................... STT : ………................... THÍ SINH CHỌN ĐÁP ÁN ĐÚNG RỒI ĐÁNH DẤU CHÉO (X) VÀO BẢNG TRẢ LỜI : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ĐIỂM A B C D Câu 1: Cho hệ phương trình tuyến tính A X  B (1) với Am n m  n  , A  A B  . Ta có A. Hệ vô nghiệm B. R (A )  R (A ) n C. Tập nghiệm của (1) là không gian con của  D. Các câu kia đều sai. Câu 2: Thăm dò 200 khách hàng tại 1 siêu thị, ta có kết quả sau: 80 khách mua nhãn hiệu A, 60 khách mua nhãn hiệu B, 50 khách mua nhãn hiệu C, 30 khách mua cả A và B, 24 khách mua cả A và C, 20 khách mua cả B và C, 8 khách mua cả A, B, C A. 200 khách mua ít nhất 1 nhãn hiệu. B. 50 khách mua đúng 2 nhãn hiệu. C. 190 khách mua đúng 1 nhãn hiệu. D. 3 câu kia đều sai Câu 3: Cho A , B là các ma trận vuông cấp n. Phát biểu nào sau đây là sai A. Nếu BA  0 thì A B  0 B. Nếu A t B t  B t A t thì (A  B )2  A 2  2A B  B 2 C. Nếu A 3  0 thì (I n  A ) là ma trận khả đảo D. Nếu BA  0 thì (A B )2  0 Câu 4: Cho V là không gian con của  n . Phát biểu nào sau đây là sai : A. Nếu dimV  n thì V   n B. Nếu dimV  n thì mọi hệ vectơ độc lập tuyến tính trong V có ít hơn n vectơ C. Nếu dimV  n thì mọi hệ vectơ phụ thuộc tuyến tính trong V có hạng nhỏ hơn n D. Nếu dimV  n thì mọi hệ vectơ phụ thuộc tuyến tính trong V có ít hơn n vectơ Câu 5: Hệ vectơ nào sau đây độc lập tuyến tính A. {(1, - 2,1), (2,1, - 1), (7, - 9, 4)} B. { 1, 2,1, 0), (- 2,1, 3,1), (0, 5, 5,1)} ( C. { 1, 2, 2,1), (1, 0, 0,1), (2,1, - 1, 0), (4, 3,1, 2)} ( D. { 1,1, - 1), (4, - 3, - 1), (- 2,1, - 1)} ( Câu 6: Cho hàm cung, hàm cầu 2 mặt hàng là: QD1  145  2P1  P2 , QS 1  45  P1 , QD2  30  P1  2P2 , QS 2  40  5P2 Trang 1/3 - Mã đề thi 209 A. Các mặt hàng này có thể thay thế nhau. B. Lượng cân bằng là Q1  60, Q2  25 C. Các mặt hàng này có thể phụ thuộc nhau. D. Giá cân bằng là P1  20, P2  70 Câu 7: Cho A là ma trận vuông cấp n với n  2 A. A  A B. Nếu A  0 thì có 1 vectơ dòng của A là tổ hợp tuyến tính của các vectơ dòng còn lại. C. 2A  2 A D. Các câu kia đều sai Câu 8: Tọa độ của v  (0,1,0,1) trong cơ sở 1,1,1,1 , 1,1,1,0 , 1,1,0,0 , 1,0,0,0  là A. 1, 1,1, 1 B. 1, 0,1, 0  C.  1,1, 1,1 D.  0,1,0,1 Câu 9: Cho A , X , B , C là các ma trận vuông cấp n n  2  , trong đó A , B ,C khả đảo. Khi đó   1 nghiệm của phương trình ma trận A X B t  C t là   1 1 1 1 A. A CB   C.  BC  A  D. CB  A  t t t B. A C t B t       Câu 10: Hệ vectơ nào sau đây không phải là không gian con của  3 : A. V  x  y  z , z  y , x  / x , y , z    B. V  x  2y , xy , 0  / x , y    C. V được sinh ra bởi hệ 1, 2,1 ,  2, 0,1 , 1, 2, 3 ,  3, 2,1 D. V  x  y , y , 0  / x , y    Câu 11: Hệ nào sau đây lập thành cơ sở của ¡ 4 A. {(1, 2, 3, 4), (2, 3, 4,1), (1, - 1, 0,1)} B. { 2, 3,1, 0), (0,1, - 1, 2), (1, - 1, 0,1), (2, 0, 3,1), (1, - 1, 0, 0)} ( C. { 1, 2, 3, 4), (2, 3, 4,1), (3, 4,1, 2), (0,1, 0,1)} ( D. 3 câu kia đều sai ...

Tài liệu được xem nhiều: