Danh mục

Đề thi thử đại học lần 1 có đáp án môn: Toán - Trường THPT Lương Văn Chánh (Năm học 2013-2014)

Số trang: 6      Loại file: pdf      Dung lượng: 212.73 KB      Lượt xem: 8      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: 2,000 VND Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi thử đại học lần 1 có đáp án môn "Toán - Trường THPT Lương Văn Chánh" dưới đây gồm 9 câu hỏi bài tập có hướng dẫn lời giải. Mời các bạn cùng tham khảo để có thêm tài liệu phục vụ nhu cầu học tập và ôn thi đại học, cao đẳng.
Nội dung trích xuất từ tài liệu:
Đề thi thử đại học lần 1 có đáp án môn: Toán - Trường THPT Lương Văn Chánh (Năm học 2013-2014)TRƯỜNG THPT CHUYÊN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 LƯƠNG VĂN CHÁNH NĂM HỌC 2013 – 2014 ebooktoan.com MÔN: TOÁN (Thời gian làm bài 180 phút ) ----------------------------------------------------------------------------------------------------- I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2,0điểm). Cho hàm số y = x3 – 3x2 + (m – 2)x + 3m (Cm) (m là tham số). 1. Khảo sát và vẽ đồ thị hàm số ứng với m = 2. 2. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị (Cm) của hàm số đã cho vuông góc với đường thẳng (d): x – y + 2 = 0 . Câu II (2,0 điểm)  (1  cos 2 x ) 1. Giải phương trình: 2 cos(  x ).  (1  cot x ) 4 sin x x  cos x 2. Tính:  dx sin 2 x  2 2 2 xy x  y  1  x  y Câu III (1,0 điểm) Giải hệ phương trình:   x  y  y  x2  Câu IV (1,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng 6 a ; điểm M là trung điểm của cạnh SA. Tính thể tích tứ diện SMBD. 2 Câu V (1,0 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: 1 1 1 3 3  3 3  1 1 a  b 1 b  c 1 c  a3 3 II. PHẦN RIÊNG (3,0 điểm). Câu VIa(3,0 điểm). DÀNH CHO THÍ SINH THI KHỐI: A, A1, B 1.a) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: 2x + 2y – 1 = 0 ; d2: 4x – 2 y + 3 = 0. Gọi A là giao điểm của d1 và d2. Viết phương trình đường thẳng qua M (4;2) và lần lượt cắt d1, d2 tại B, C sao cho tam giác ABC cân tại A. 2.a) Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất để chỉ có hai em nữ A , B đứng cạnh nhau còn các em nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh A, B . 3.a) Tìm m để bất phương trình sau có nghiệm thuộc đoạn  0 ; 1  3    m 1  x 2  2 x  2  x( 2  x )  0 . Câu VIb(3điểm). DÀNH CHO THÍ SINH THI KHỐI: D, D1, M 1.b) Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 4x – 2y – 4 = 0. Viết phương trình đường thẳng qua M(1;4) và tiếp xúc với đường tròn (C). 2 1 2.b) Tìm hệ số của x trong khai triển Niu tơn đa thức f ( x)   x 2  x  1 ( x  2) 3n với n là số 10 4  3 n 2 tự nhiên thỏa mãn: An  C n  14n . log 22 x 3.b) Xác định m để bất phương trình:  m nghiệm đúng với mọi x thuộc tập xác định log 22 x 1 . ebooktoan.com ĐÁP ÁNCâu Nội dung Thang điểm I-PHẦN CHUNGCâu I(2đ) y = x3 – 3x2 + (m – 2)x + 3m1(1đ) Khi m = 2, ta được hàm: y = x3 – 3x2 + 6 - TXĐ: D = R - y’= 3x2 – 6x x  0  y  6 0,25 y’= 0   x  2  y  2 - lim  ; lim   x   x   - BBT: x  0 ...

Tài liệu được xem nhiều: