Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 2
Số trang: 7
Loại file: pdf
Dung lượng: 220.62 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo đề thi thử môn Toán khối B kèm hướng dẫn đáp án chi tiết, cùng ôn tập và rèn luyện với bộ đề thi thử trên TaiLieu.VN giúp bạn làm bài thi đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 2 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI B NĂM 2013-2014 Đề Số 2PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm) Cho hàm số y = x3 – 3x2+2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y =3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất.Câu II (2 điểm) 1. Giải phương trình cos2x + 2sin x − 1 − 2sin x cos 2x = 0 2. Giải bất phương trình ( 4x − 3) x 2 − 3x + 4 ≥ 8x − 6 π 3 cotxCâu III ( 1điểm)Tính tích phân I = ∫ dx ⎛ π⎞ π s inx.sin ⎜ x + ⎟ 6 ⎝ 4⎠Câu IV (1 điểm) Cho hình chóp S.ABC có mặt đáy (ABC) là tam giác đều cạnh a. Chân đường vuông góc hạ từ S xuống mặt phẳng (ABC) là một điểm thuộc BC. Tính khoảng cách giữa hai đường thẳng BC và SA biết SA=a và SA tạo với mặt phẳng đáy một góc bằng 300.Câu V (1 điểm) Cho a,b, c dương và a2+b2+c2=3. Tìm giá trị nhỏ nhất của biểu thức a3 b3 c3 P= + + b2 + 3 c2 + 3 a2 + 3PHẦN RIÊNG (3 điểm)A. Theo chương trình chuẩnCâu VI.a. (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x 2 + y 2 + 2x − 8y − 8 = 0 . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. 2. Cho ba điểm A(1;5;4), B(0;1;1), C(1;2;1). Tìm tọa độ điểm D thuộc đường thẳng AB sao cho độ dài đoạn thẳng CD nhỏ nhất.Câu VII.a (1 điểm) Tìm số phức z thoả mãn : z − 2 + i = 2 . Biết phần ảo nhỏ hơn phần thực 3 đơn vị.B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1. Tính giá trị biểu thức: A = 4C100 + 8C100 + 12C100 + ... + 200C100 . 2 4 6 100 2. Cho hai đường thẳng có phương trình: ⎧x = 3 + t x−2 z+3 ⎪ d1 : = y +1 = d 2 : ⎨ y = 7 − 2t 3 2 ⎪z = 1− t ⎩ Viết phương trình đường thẳng cắt d1 và d2 đồng thời đi qua điểm M(3;10;1).Câu VII.b (1 điểm) Giải phương trình sau trên tập phức: z2+3(1+i)z-6-13i=0 -------------------Hết----------------- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu Nội dung Điểm Tập xác định: D=R lim ( x 3 − 3x 2 + 2 ) = −∞ lim ( x3 − 3x 2 + 2 ) = +∞ x →−∞ x →+∞ ⎡x = 0 y’=3x2-6x=0 ⇔ ⎢ ⎣x = 2 0,25 đ Bảng biến thiên: x -∞ 0 2 +∞ y’ + 0 - 0 + 0,25 đ 2 +∞ y -∞ -2 1 Hàm số đồng biến trên khoảng: (-∞;0) và (2; + ∞) Hàm số nghịch biến trên khoảng (0;2) fCĐ=f(0)=2; fCT=f(2)=-2 0,5 đ y’’=6x-6=0x=1 I khi x=1=>y=0 x=3=>y=2 x=-1=>y=-2 Đồ thị hàm số nhận điểm I(1;0) là tâm đối xứng. Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B(2;-2) Xét biểu thức P=3x-y-2 Thay tọa độ điểm A(0;2)=>P=-4P=6>0 0,25 đ Vậy 2 điểm cực đại và cực tiểu nằm về hai phía của đường thẳng y=3x-2, để MA+MB nhỏ nhất => 3 điểm A, M, B thẳng hàng 0,25 đ 2 Phương trình đường thẳng AB: y=-2x+2 0,25 đ Tọa độ điểm M là nghiệm của hệ: ⎧ 4 ⎧ y = 3x − 2 ⎪x = 5 ⎪ ⎛4 2⎞ 0,25 đ ⎨ ⇔⎨ => M ⎜ ; ⎟ ⎩ y = −2 x + 2 ⎪y = 2 ⎝5 5⎠ ⎪ ⎩ 5 Giải phương trình: cos2x + 2sin x − 1 − 2sin x cos 2x = 0 (1) (1) ⇔ cos2 x (1 − 2sin x ) − (1 − 2sin x ) = 0 II 1 0,5 đ ⇔ ( cos2 x − 1)(1 − 2sin x ) = 0 Khi cos2x=1 x = kπ , k ∈ Z 1 π 5π 0,5 đ Khi s inx = ⇔ x = + k 2π hoặc x = + k 2π , k ∈ Z 2 6 6 Giải bất phương trình: ( 4x − 3) x 2 − 3x + 4 ≥ 8x − 6 (1) (1) ⇔ ( 4 x − 3) ( ) x 2 − 3x ...
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học môn Toán khối B năm 2014 - Đề số 2 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI B NĂM 2013-2014 Đề Số 2PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm) Cho hàm số y = x3 – 3x2+2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm điểm M thuộc đường thẳng y =3x-2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất.Câu II (2 điểm) 1. Giải phương trình cos2x + 2sin x − 1 − 2sin x cos 2x = 0 2. Giải bất phương trình ( 4x − 3) x 2 − 3x + 4 ≥ 8x − 6 π 3 cotxCâu III ( 1điểm)Tính tích phân I = ∫ dx ⎛ π⎞ π s inx.sin ⎜ x + ⎟ 6 ⎝ 4⎠Câu IV (1 điểm) Cho hình chóp S.ABC có mặt đáy (ABC) là tam giác đều cạnh a. Chân đường vuông góc hạ từ S xuống mặt phẳng (ABC) là một điểm thuộc BC. Tính khoảng cách giữa hai đường thẳng BC và SA biết SA=a và SA tạo với mặt phẳng đáy một góc bằng 300.Câu V (1 điểm) Cho a,b, c dương và a2+b2+c2=3. Tìm giá trị nhỏ nhất của biểu thức a3 b3 c3 P= + + b2 + 3 c2 + 3 a2 + 3PHẦN RIÊNG (3 điểm)A. Theo chương trình chuẩnCâu VI.a. (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x 2 + y 2 + 2x − 8y − 8 = 0 . Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 và cắt đường tròn theo một dây cung có độ dài bằng 6. 2. Cho ba điểm A(1;5;4), B(0;1;1), C(1;2;1). Tìm tọa độ điểm D thuộc đường thẳng AB sao cho độ dài đoạn thẳng CD nhỏ nhất.Câu VII.a (1 điểm) Tìm số phức z thoả mãn : z − 2 + i = 2 . Biết phần ảo nhỏ hơn phần thực 3 đơn vị.B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1. Tính giá trị biểu thức: A = 4C100 + 8C100 + 12C100 + ... + 200C100 . 2 4 6 100 2. Cho hai đường thẳng có phương trình: ⎧x = 3 + t x−2 z+3 ⎪ d1 : = y +1 = d 2 : ⎨ y = 7 − 2t 3 2 ⎪z = 1− t ⎩ Viết phương trình đường thẳng cắt d1 và d2 đồng thời đi qua điểm M(3;10;1).Câu VII.b (1 điểm) Giải phương trình sau trên tập phức: z2+3(1+i)z-6-13i=0 -------------------Hết----------------- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu Nội dung Điểm Tập xác định: D=R lim ( x 3 − 3x 2 + 2 ) = −∞ lim ( x3 − 3x 2 + 2 ) = +∞ x →−∞ x →+∞ ⎡x = 0 y’=3x2-6x=0 ⇔ ⎢ ⎣x = 2 0,25 đ Bảng biến thiên: x -∞ 0 2 +∞ y’ + 0 - 0 + 0,25 đ 2 +∞ y -∞ -2 1 Hàm số đồng biến trên khoảng: (-∞;0) và (2; + ∞) Hàm số nghịch biến trên khoảng (0;2) fCĐ=f(0)=2; fCT=f(2)=-2 0,5 đ y’’=6x-6=0x=1 I khi x=1=>y=0 x=3=>y=2 x=-1=>y=-2 Đồ thị hàm số nhận điểm I(1;0) là tâm đối xứng. Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B(2;-2) Xét biểu thức P=3x-y-2 Thay tọa độ điểm A(0;2)=>P=-4P=6>0 0,25 đ Vậy 2 điểm cực đại và cực tiểu nằm về hai phía của đường thẳng y=3x-2, để MA+MB nhỏ nhất => 3 điểm A, M, B thẳng hàng 0,25 đ 2 Phương trình đường thẳng AB: y=-2x+2 0,25 đ Tọa độ điểm M là nghiệm của hệ: ⎧ 4 ⎧ y = 3x − 2 ⎪x = 5 ⎪ ⎛4 2⎞ 0,25 đ ⎨ ⇔⎨ => M ⎜ ; ⎟ ⎩ y = −2 x + 2 ⎪y = 2 ⎝5 5⎠ ⎪ ⎩ 5 Giải phương trình: cos2x + 2sin x − 1 − 2sin x cos 2x = 0 (1) (1) ⇔ cos2 x (1 − 2sin x ) − (1 − 2sin x ) = 0 II 1 0,5 đ ⇔ ( cos2 x − 1)(1 − 2sin x ) = 0 Khi cos2x=1 x = kπ , k ∈ Z 1 π 5π 0,5 đ Khi s inx = ⇔ x = + k 2π hoặc x = + k 2π , k ∈ Z 2 6 6 Giải bất phương trình: ( 4x − 3) x 2 − 3x + 4 ≥ 8x − 6 (1) (1) ⇔ ( 4 x − 3) ( ) x 2 − 3x ...
Tìm kiếm theo từ khóa liên quan:
Đề thi thử Đại học khối B môn Toán 2014 Đề thi thử môn Toán 2014 Đề thi thử đại học 2014 Đề thi thử đại học môn Toán khối B Đề thi thử đại học khối B 2014 Đáp án đề thi thử môn Toán khối BTài liệu liên quan:
-
Đề thi khảo sát chất lượng hóa học 12 dự thi đại học 2014 - Trường THPT chuyên ĐH KHTN - Mã đề 179
10 trang 121 0 0 -
3 Đề thi thử ĐH môn Toán - Sở GD&ĐT Bắc Ninh năm 2014 khối A, B, D
17 trang 36 0 0 -
2 Đề thi thử ĐH môn Toán - THPT Lương Thế Vinh lần 2 năm 2014
12 trang 29 0 0 -
4 Đề thi thử ĐH môn Vật lý lần 2 - THPT Lương Thế Vinh năm 2013-2014
22 trang 29 0 0 -
4 Đề thi thử ĐH môn Hóa lần 2 - PTTH Lương Thế Vinh năm 2013-2014
18 trang 26 0 0 -
Đề thi thử Đại học môn Toán năm 2014 - Bộ GD&ĐT - Đề số 1
1 trang 25 0 0 -
Đề thi thử ĐH Tiếng Anh - THPT Lê Xoay lần 3 đề 020
7 trang 24 0 0 -
Đề thi thử ĐH môn Toán - THPT Chuyên Vĩnh Phúc lần 1 (2013-2014) khối D
7 trang 22 0 0 -
Đề thi thử ĐH môn Anh - THPT Lương Thế Vinh (2013-2014) đợt 3
8 trang 22 0 0 -
Đề thi thử ĐH môn Vật lý khối A đề số 22
7 trang 21 0 0