Danh mục

Đề thi thử Đại học môn Toán năm 2013 - Đề số 26

Số trang: 10      Loại file: doc      Dung lượng: 474.50 KB      Lượt xem: 8      Lượt tải: 0    
Thư Viện Số

Hỗ trợ phí lưu trữ khi tải xuống: 3,000 VND Tải xuống file đầy đủ (10 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Là một trong những tài liệu tham khảo hay và hữu ích cho những bạn đang có nhu cầu học tập và ôn thi Đại học - Cao đẳng, đề thi thử Đại học năm 2013 môn Toán sẽ mang đến cho bạn những đề bài và hướng dẫn giải hữu ích nhất.
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học môn Toán năm 2013 - Đề số 26 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN (ĐỀ 26)PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)Câu I (2 điểm) Cho hàm số y = f ( x ) = 8x 4 − 9x 2 + 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 8cos 4 x − 9cos 2 x + m = 0 với x [0; π ] .Câu II (2 điểm) : Giải phương trình, hệ phương trình: � 1� 3 log x x + y + x 2 − y 2 = 12 1. ( x − 2) � − � = x − 2 ; x 2. � 2� y x 2 − y 2 = 12Câu III: Tính diện tích của miền phẳng giới hạn bởi các đường y =| x 2 − 4 x | và y = 2x .Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r chotrước. Tính thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nh ỏ.Câu V (1 điểm) Định m để phương trình sau có nghiệm � π� � π� � π� 4sin3xsinx + 4cos � - �os � + � cos 2 � + � m = 0 3x c x − 2x + � 4� � 4� � 4�PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2)1. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1. Cho ∆ ABC có đỉnh A(1;2), đường trung tuyến BM: 2 x + y + 1 = 0 và phân giáctrong CD: x + y − 1 = 0 . Viết phương trình đường thẳng BC. x = −2 + t 2. Cho đường thẳng (D) có phương trình: y = −2t .Gọi ∆ là đường z = 2 + 2tthẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chi ếu vuông góc c ủa Atrên (D). Trong các mặt phẳng qua ∆ , hãy viết phương trình của mặt phẳng có khoảngcách đến (D) là lớn nhất.Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5 + + xy + 1 yz + 1 zx + 1 x+ y+z2. Theo chương trình nâng cao.Câu VI.b (2 điểm)1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao đi ểm I c ủahai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D.2. Cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng ∆ có phương trình tham số x = −1 + 2t y = 1 − t .Một điểm M thay đổi trên đường thẳng ∆ , tìm điểm M để chu vi tam giác z = 2tMAB đạt giá trị nhỏ nhất.Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh � 1 1 2 � b c a� + + � + + : Phương trình đã cho vô nghiệm. 32 81 1. m = : Phương trình đã cho có 2 nghiệm. 32 0,50 81 • 1 m< : Phương trình đã cho có 4 nghiệm. 32 • 0 < m 2 x x−2>0 x x=2 �= 2 x �= 2 x �log 3 x = 0 � � �� = 1 �x �� = 1 �x � � � 1� � � � � 1 � � �� � x=2 0,50 � � � ln � − � 0 x = � − = 1 �� = 3 � x � �x �� � 2 � � �� 2 � �� 2 � �>2 x � �x > 2 � � � �x > 2 � � 2 1,00 Điều kiện: | x | | y | u = x2 − y 2 ; u 0 x = −y Đặt ; không thỏa hệ nên xét x − y ta có v = x+ y 1 � u2 � y = �− � v . 2� v � ...

Tài liệu được xem nhiều: