Danh mục

Đề Thi Thử Đại Học Toán 2013 - Đề 12

Số trang: 6      Loại file: pdf      Dung lượng: 209.65 KB      Lượt xem: 11      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 1,000 VND Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra đề thi thử đại học toán 2013 - đề 12, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề Thi Thử Đại Học Toán 2013 - Đề 12KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 13 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I (3,0 điểm): Cho hàm số: y = (x 2 - 2)2 - 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số. 2) Dựa vào đồ thị (C) biện luận số nghiệm phương trình: x 4 - 4x 2 = m .Câu II (3,0 điểm): 1) Giải phương trình: log2 (x - 5) + log x+ 2= 3 2 ln 2 e 3x +1 2) Tính tích phân: I = ò0 x dx e 3 - 2x 3) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = trên đoạn [1; 4] x+1Câu III (1,0 điểm): Cho hình lăng trụ A BC .A ¢B ¢ ¢có đáy ABC là tam giác đều cạnh bằng a. Hình C chiếu vuông góc của A ¢ xuống mặt phẳng (ABC) là trung điểm của AB. Mặt bên (A A ¢ ¢ ) tạo với đáy một góc bằng 45o . Tính thể tích của khối lăng trụ này. CCII. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian Oxyz, cho hai điểm A (0;1; - 4), B (1; 0; - 5) và đường thẳng x- 1 y- 4 z- 1 D: = = 1 - 4 - 2 1) Viết phương trình đường thẳng AB và chứng minh rằng AB và D chéo nhau. 2) Viết phương trình mặt phẳng (P) chứa hai điểm A,B đồng thời song song với đường thẳng D . Tính khoảng cách giữa đường thẳng D và mặt phẳng (P).Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi: y = x 2 - 12x + 36 và y = 6x - x 22. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian Oxyz, cho hai đường thẳng: ìx = 1+ t ï ï ï x- 3 y- 1 z D1 : ï y = - 1 - t í D2 : = = ï ïz = 2 - 1 2 1 ï ï î 1) Chứng minh D 1 và D 2 chéo nhau. Viết phương trình mp(P) chứa D 1 và song song D 2 . 2) Tìm điểm A trên D 1 và điểm B trên D 2 sao cho độ dài đoạn AB ngắn nhất.Câu Vb (1,0 điểm): Trên tập số phức, tìm B để phương trình bậc hai z 2 + Bz + i = 0 có tổng bình phương hai nghiệm bằng - 4i ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I:  Hàm số: y = (x 2 - 2)2 - 1 = x 4 - 4x 2 + 4 - 1 = x 4 - 4x 2 + 3  Tập xác định: D = ¡  Đạo hàm: y ¢ = 4x 3 - 8x é = 0 x  Cho y ¢ = 0 Û 4x 3 - 8x = 0 Û 4x (x 2 - 2) Û êê ê = ± 2 x ë  Giới hạn: lim y = + ¥ ; lim y = + ¥ x®- ¥ x® + ¥  Bảng biến thiên x – - 2 0 2 + y¢ – 0 + 0 – 0 + +¥ 3 +¥ y –1 –1  Hàm số ĐB trên các khoảng (- 2;0),( 2; + ¥ ) , NB trên các khoảng (- ¥ ; - 2),(0; 2) Hàm số đạt cực đại y CÑ = 3 tại x CÑ = 0 . y ...

Tài liệu được xem nhiều: