Thông tin tài liệu:
Tham khảo đề thi thử ĐH môn Toán - THPT Phan Đăng Lưu lần 1 năm 2013 khối D dành cho các em học sinh đang chuẩn bị cho kỳ tuyển sinh sinh Đại học, với đề thi này các em sẽ được làm quen với cấu trúc đề thi và củng cố lại kiến thức căn bản nhất.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH môn Toán - THPT Phan Đăng Lưu lần 1 năm 2013 khối D SỞ GD&ĐT NGHỆ AN ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT 2013TRƯỜNG THPT PHAN ĐĂNG LƯU Môn: TOÁN ; Khối D . Thời gian làm bài 180 phút (không kể thời gian phát đề). Câu I (2,0 điểm). Cho hàm số y = x 3 − 3x 2 + 4 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Lập phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng (d) : x – 3y + 2 = 0. Câu II (2.0 điểm) 1. Giải phương trình: 2x 3 − 3 − 2x = 1 . π 2. Giải phương trình 2 sin 2 x + = 3sin x + cos x + 2 . 4 1 x Câu III (1,0 điểm) Tính: I = ∫ dx 0 x +1 − x 2 Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D. Biết SA ⊥ (ABCD), SA= a, AB = 2a, AD = DC = a. Tính thể tích khối chóp S.ABCD và khoảng cách giữa AB và SC. Câu V (1.0 điểm) Cho a, b, c ∈ [0;2]. Tìm GTLN của P = 2(a + b + c) – (ab + bc + ca) Câu VI (3,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho hình thoi ABCD có B(-2;5), D(2;1), 3 cos ABC = . Biết hoành độ A dương. Tìm tọa độ A, C. 5 2. Trong không gian Oxyz cho điểm M(1; 2; 3). Viết phương trình mặt cầu tâm M cắt mặt phẳng Oxy theo thiết diện là đường tròn (C) có chu vi là 8 π . 5 n 3. Tìm hệ số của x trong khai triển của (x + 1) biết n là số tự nhiên chẵn thỏa 2 4 3 3 mãn: Cn + Cn = C 2 n ****************************** Hết ********************************* Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. 1 Cảm ơn lovemath@gmail.comgửitới www.laisac.page.tl Họ và tên: ……………………………………. SBD: ………………………….. ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM – MÔN TOÁN, KHỐI D - 2013 Câu Đáp án ĐiểmCâu 1 1. (1 điểm)(2 điểm) +) Tập xác định: D = ℝ +) Sự biến thiên: 0.25 2 -) Chiều biến thiên: y = 3x − 6x = 0 ⇔ x = 0 và x = 2 y’ > 0, h/s đồng biến trên (- ∞ ; 0) và (2;+ ∞ ), y’ < 0, h/s nghịch biến trên (0; 2) -) Cực trị: H/s đạt cực đại tại x = 0, y(CĐ) = 4, H/s đạt cực tiểu tại x = 2, y(CT) = 0 0.25 -) Giới hạn: lim = ±∞ x →±∞ -) Bảng biến thiên: 0.25 +) Đồ thị: 0.25 2 0.25 0.5 0.25 2.(1 điểm): Giả sử ( x 0 , y 0 ) là tiếp điểm, khi đó f’( x 0 ) = 3x 0 2 − 6x 0 là hệ số góc của tiếp tuyến Do tiếp tuyến tại ( x 0 , y 0 ) vuông góc (d) nên 1 2 f (x 0 ). = −1 ⇔ 3x 0 − 6x 0 = −3 ⇔ x 0 = −1 ⇒ y 0 = 2 3 Vậy tiếp tuyến cần tìm là : y = -3(x + 1) +2 ⇔ 3x + y + 1 = 0Câu 2 3 0.25 1. (1 điểm). Đk : x ≤(2 điểm) 2 1 3 Xét h/s f(x) = 2x3 − 3 − 2x . Do f = 6x 2 + > 0, ∀x < . 3 − 2x 2 0.5 3 Nên h/s đồng biến trên (−∞; ] . 2 Nhận thấy x = 1 là một nghiệm của phương trình. ...