Thông tin tài liệu:
Tham khảo tài liệu đề thi thử môn toán năm 2011 - đề số 15, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ MÔN TOÁN NĂM 2011 - ĐỀ SỐ 15SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC NĂM 2011TRƯỜNNG THPT LƯƠNG TÀI 2 Môn: Toán – Ngày thi: 06.12.2010 Th ời gian 180 phút ( không kể giao đề ) ĐỀ CHÍNH THỨCPhần chung cho tất cả các thí sinh (7 điểm )Câu I: (2 điểm) 2x 3 Cho hàm số y x2 1 . Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2 . Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đ ường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất.Câu II (2 điểm) x x x 1 . Giải phương trình 1 sin sin x cos sin 2 x 2 cos 2 2 2 4 2 1 2 . Giải bất phương trình log 2 (4 x 2 4 x 1) 2 x 2 ( x 2) log 1 x 2 2 Câu III (1 điểm) e ln x 3 x 2 ln x dx Tính tích phân I 1 x 1 ln x Câu IV (1 điểm) a . SA a 3 , SAB SAC 300 . Tính thể tích Cho hình chóp S.ABC có AB = AC = a. BC = 2 khối chóp S.ABC. 3Câu V (1 điểm) Cho a , b, c là ba số dương thoả m ãn : a + b + c = . Tìm giá trị nhỏ nhất của 4 1 1 1 b iểu thức P 3 3 3 a 3b b 3c c 3aPhần riêng (3 điểm) Thí sinh chỉ đ ược làm một trong hai phần: Phần 1 hoặc phần 2Phần 1 :(Theo chương trình Chuẩn)Câu VIa (2 điểm) 1 . Trong m ặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng d1 : 2 x y 5 0 . d 2: 3x +6y – 7 = 0 . Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường th ẳng đó cắt hai đ ường thẳng d1 và d 2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. 2 . Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và mặt phẳng (P) có phương trình: x y z 2 0 . Gọi A’là hình chiêú của A lên m ặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4 điểm A’, B, C, D. Xác định toạ độ tâm và b án kính của đường tròn (C) là giao của (P) và (S).Câu VIIa (1 điểm) Tìm số nguyên dương n b iết: 2 C2 n1 3.2.2C2 n 1 .... ( 1)k k (k 1)2 k 2 C2 n 1 .... 2 n(2 n 1)2 2 n 1 C2 n1 40200 2 n 1 k 2 3 Phần 2: (Theo chương trình Nâng cao) Câu VIb (2 điểm) x2 y2 1 .Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1. 16 9 Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). 2 . Trong không gian với hệ trục toạ độ Oxyz cho P : x 2 y z 5 0 và đường thẳng x3 y 1 z 3 , điểm A( -2; 3; 4). Gọi là đường thẳng nằm trên (P) đi qua giao (d ) : 2 đ iểm của ( d) và (P) đồng thời vuông góc với d. Tìm trên điểm M sao cho kho ảng cách AM ngắn nhất. Câu VIIb (1 điểm): 2 3 x 1 2 y 2 3.2 y 3 x Giải hệ phương trình 3 x 2 1 xy x 1 -------------- Hết-------------- Chú ý: Thí sinh dự thi khối B và D không phải làm câu V Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh:--------------------------- Số báo danh Dáp ánCâu Nội dung ĐiểmI. 1 Khảo sát hàm số và vẽ đồ thị hàm số .................. 1 ,00 1) Hàm số có TXĐ: R \ 2 0 ,25 2) Sự biến thiên của hàm số: a) Giới hạn vô cực và các đư ờng tiệm cận: * lim y ; lim y ...