Danh mục

Đề thi tuyển sinh ĐH-CĐ năm 2010 môn Toán khối A (BGD)_Đề 1

Số trang: 5      Loại file: pdf      Dung lượng: 183.46 KB      Lượt xem: 11      Lượt tải: 0    
Thư viện của tui

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi tuyển sinh đh-cđ năm 2010 môn toán khối a (bgd)_đề 1, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh ĐH-CĐ năm 2010 môn Toán khối A (BGD)_Đề 1 Bộ Giáo Dục và Đào tạo ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 ĐỀ THAM KHẢO Môn thi : TOÁN - khối A. Email: phukhanh@moet.edu.vn Ngày thi : 28.02.2010 (Chủ Nhật ) ĐỀ 01 I. PHẦN BẮT BUỘC ( 7,0 điểm ) x +3 Câu I : ( 2 điểm ) Cho hàm số : y = x −1 , có đồ thị là C ( ). ( ) 1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số . ( ) ( ) ( ) 2. Cho điểm M 0 x 0 ; y 0 ∈ C . Tiếp tuyến của C tại M 0 cắt các đường tiệm cận của C ( ) tại các điểm A, B . Chứng minh M 0 là trung điểm của đoạn AB . Câu II: ( 2 điểm ) 6x − 4 sin 3 x .sin 3x + cos3 x cos 3x 11. Giải phương trình : 2x + 4 − 2 2 − x = 2. Giải phương trình : =− x2 + 4  π  π 8 ta n  x −  ta n  x +   6  3 3 −1 dx Câu III: ( 1 điểm ) Tính tích phân I = ∫ 0 x + 2x + 2 2 Câu IV: ( 1 điểm ) Cho tứ diện OABC có đáy OBC là tam giác vuông tại O ,OB = a, OC = 3, (a > 0 ) . và đường cao OA = a 3 . Gọi M là trung điểm của cạnh BC . Tính khoảng cách giữa hai đường thẳng AB,OM . 1 1 1 1 Câu V: ( 1 điểm ) Cho 3 số thực dương x , y , z thỏa mãn + + = . Tìm giá trị lớn nhất của biểu x y z xyz 2 x 2 y z −1 thức P = + + 1+x 1+y z +1 II. PHẦN TỰ CHỌN ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz ( ) ( ) ( ) ( ) 1. Cho 4 điểm A 1; 0; 0 , B 0; −1; 0 ,C 0; 0;2 , D 2; −1;1 . Tìm vectơ A B là hình chiếu của vectơ AB lên CD . x y −2 z 2. Cho đường thẳng : d : 1 = () 2 2 ( ) = và mặt phẳng P : x − y + z − 5 = 0 . Viết phương trình tham số của đường thẳng () ( ) ( ) t đi qua A 3; −1;1 nằm trong P và hợp với d một góc 450 . () Câu VII.a( 1 điểm ) Một giỏ đựng 20 quả cầu. Trong đó có 15 quả màu xanh và 5 quả màu đỏ. Chọn ngẫu nhiên 2 quả cầu trong giỏ.Tính xác suất để chọn được 2 quả cầu cùng màu ? 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz x −1 y +2 z − 3 1. Cho 3 điểm A ( 0;1; 0 ) , B ( 2;2; 2 ) và đường thẳng (d ) : = = . Tìm điểm M ∈ d để diện tích() 2 −1 2 tam giác ABM nhỏ nhất. x +1 y −1 z −2 x −2 y +2 2. Cho hai đường thẳng (d ) : −2 = 3 = 2 và d : 1 = 2 ( ) = z −2 ...

Tài liệu được xem nhiều: