Enhanced force field construction for graphene monolayers via neural network-based fitting of density functional theory data
Số trang: 7
Loại file: pdf
Dung lượng: 617.77 KB
Lượt xem: 6
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This study presents a novel neural network (NN) framework for developing force fields specific to graphene monolayers, utilizing data obtained from first-principles calculations. The authors analyze three primary force components, force magnitude and the cosines of two angles across different configurations of surrounding carbon atoms.
Nội dung trích xuất từ tài liệu:
Enhanced force field construction for graphene monolayers via neural network-based fitting of density functional theory data
Nội dung trích xuất từ tài liệu:
Enhanced force field construction for graphene monolayers via neural network-based fitting of density functional theory data
Tìm kiếm theo từ khóa liên quan:
Force field Neural network Graphene monolayers Density functional theory data First-principles calculationsGợi ý tài liệu liên quan:
-
A new approach for continous learning
5 trang 27 0 0 -
Xác định hematocrit sử dụng mạng neural được huấn luyện online dựa trên máy học cực độ
8 trang 26 0 0 -
Effect of real-time price on short-term load forecasting
8 trang 26 0 0 -
Estimation of shale volume from well logging data using Artificial Neural Network
7 trang 23 0 0 -
Bài giảng Máy học nâng cao: Giới thiệu - Trịnh Tấn Đạt
41 trang 20 0 0 -
Mobile robot localization using fuzzy neural network based extended kalman filter
13 trang 20 0 0 -
Develop a model for fabric defect prognostic and classification
4 trang 20 0 0 -
Atomic and electronic structures of I-V-VI2 ternary chalcogenides
6 trang 18 0 0 -
A review of neural networks for rare intrusions detection in wireless networks
12 trang 17 0 0 -
Neurol Networks and applications
40 trang 17 0 0