Giáo trình giải tích cơ sở
Số trang: 10
Loại file: pdf
Dung lượng: 158.68 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Giáo trình giải tích cơ sở - Không gian định chuẩn - Ánh xạ tuyến tính liên tục - Không gian Hilbert
Nội dung trích xuất từ tài liệu:
Giáo trình giải tích cơ sở GI I TÍCH (CƠ S ) Chuyên ngành: Gi i Tích, PPDH Toán Ph n 2. Không gian đ nh chu n Ánh x tuy n tính liên t c §3. Không gian Hilbert (Phiên b n đã ch nh s a) PGS TS Nguy n Bích Huy Ngày 27 tháng 3 năm 2005 I. Ph n lý thuy t 1 Tích vô hư ng, không gian Hilbert 1.1 Đ nh nghĩa Đ nh nghĩa 1 1. Cho không gian vectơ X trên trư ng s K (K = R ho c K = C).M t ánh x t X × X vào K, (x, y ) → x, y đư c g i là m t tích vô hư ng trên X n u nó th a mãn các đi u ki n sau: (a) x, x ≥ 0 ∀x ∈ X x, x = 0 ⇔ x = θ ∀x, y ∈ X (b) y , x = x, y ( y , x = x, y n u K = R), ∀x, x , y ∈ X (c) x + x , y = x, y + x , y ∀x, y ∈ X, ∀λ ∈ K (d) λx, y = λ x, y 1 T các tính ch t i) - iv) ta cũng có: x, y + y = x, y + x, y , x, λy = λ x, y 2. N u ., . là m t tích vô hư ng trên X thì ánh x x → x, x là m t chu n trên X , g i là chu n sinh b i tích vô hư ng. 3. N u ., . là tích vô hư ng trên X thì c p(X, ., . ) g i là m t không gian ti n Hilbert (hay không gian Unita, không gian v i tích vô hư ng). S h i t , khái ni m t p m ,...,trong (X, ., . ) luôn đư c g n v i chu n sinh b i ., . . N u không gian đ nh chu n tương ng đ y đ thì ta nói (X, ., . ) là không gian Hilbert. 1.2 Các tính ch t 1. B t đ ng th c Cauchy - Schwartz: | x, y | ≤ x . y 2. x + y 2 + x − y 2 = 2( x 2 + y 2) (đ ng th c bình hành). 3. N u lim xn = a, lim yn = b thì lim xn, yn = a, b Ví d 1 1. Trong C [a, b] các hàm th c liên t c trên [a, b] thì ánh x b (x, y ) → x, y = x(t)y (t)dt a là m t tích vô hư ng. Không gian (C [a, b], ., . ) không là không gian Hilbert.(xây d ng ví d tương t ph n không gian met- ric) 2. Trong l2, v i x = {λk }, y = {αk }, ta đ nh nghĩa ∞ x, y = λk αk k =1 thì ., . là tích vô hư ng, (l2, ., . ) là không gian Hilbert. 2 2 S tr c giao 2.1 Đ nh nghĩa Đ nh nghĩa 2 Cho không gian v i tích vô hư ng (X, ., . ) và x, y ∈ X, φ = M ⊂ X . 1. Ta nói x tr c giao v i y (vi t x⊥y ) n u x, y 2. N u x⊥y ∀y ∈ M thì ta vi t x⊥M . Ta ký hi u M ⊥ = {x ∈ X : x ⊥ M } . 2.2 Các tính ch t 1. N u x ⊥ M thì x ⊥ M ( M ch không gian con sinh b i M) 2. N u x ⊥ yn ∀n ∈ N∗ và lim yn = y thì x ⊥ y . Suy ra n u x ⊥ M thì cũng có x ⊥ M . 3. M ⊥ là m t không gian con đóng. 4. N u x1, . . . , xn đôi n t tr c giao thì 2 2 + . . . + xn 2(đ ng th c Pythagore) x1 + . . . + xn = x1 Đ nh lý 1 (v phân tích tr c giao) N u M là m t không gian con đóng c a không gian Hilbert (X, ., . ) thì m i x ∈ X có duy nh t phân tích d ng y ∈ M, z ∈ M ⊥ x = y + z, (1) Ph n t y trong (1) g i là hình chi u tr c giao c a x lên M và có tính ch t x − y = inf x − y . y ∈M 3 3 H tr c chu n. Chu i Fourier 3.1 Đ nh nghĩa Cho không gian Hilbert (X, ., . ) 1. H {e1, e2, . . .} ⊂ X g i là m t h tr c chu n n u 0 n ui=j ei, ej = 1 n ui=j = 1 ∀n ∈ N∗ và Như v y, {en} là h tr c chu n n u en ei ⊥ ej (i = j ). 2. H tr c chu n {en} g i là đ y đ , n u nó có tính ch t sau: (x ⊥ en ∀n = 1, 2, . . .) ⇒ x = θ. 3. N u {en} là h tr c chu n thì chu i ∞ x, en · en g i là chu i n=1 Fourier c a ph n t x theo h chu n {en}. Đ nh lý 2 Cho {en} là h tr c chu n trong không gian Hilbert (X, ., . ) và {λn} là m t dãy s . Ta xét chu i ∞ λnen (2) n=1 Ta có: ∞ 2 n=1 |λn | < ∞. 1. Ch ...
Nội dung trích xuất từ tài liệu:
Giáo trình giải tích cơ sở GI I TÍCH (CƠ S ) Chuyên ngành: Gi i Tích, PPDH Toán Ph n 2. Không gian đ nh chu n Ánh x tuy n tính liên t c §3. Không gian Hilbert (Phiên b n đã ch nh s a) PGS TS Nguy n Bích Huy Ngày 27 tháng 3 năm 2005 I. Ph n lý thuy t 1 Tích vô hư ng, không gian Hilbert 1.1 Đ nh nghĩa Đ nh nghĩa 1 1. Cho không gian vectơ X trên trư ng s K (K = R ho c K = C).M t ánh x t X × X vào K, (x, y ) → x, y đư c g i là m t tích vô hư ng trên X n u nó th a mãn các đi u ki n sau: (a) x, x ≥ 0 ∀x ∈ X x, x = 0 ⇔ x = θ ∀x, y ∈ X (b) y , x = x, y ( y , x = x, y n u K = R), ∀x, x , y ∈ X (c) x + x , y = x, y + x , y ∀x, y ∈ X, ∀λ ∈ K (d) λx, y = λ x, y 1 T các tính ch t i) - iv) ta cũng có: x, y + y = x, y + x, y , x, λy = λ x, y 2. N u ., . là m t tích vô hư ng trên X thì ánh x x → x, x là m t chu n trên X , g i là chu n sinh b i tích vô hư ng. 3. N u ., . là tích vô hư ng trên X thì c p(X, ., . ) g i là m t không gian ti n Hilbert (hay không gian Unita, không gian v i tích vô hư ng). S h i t , khái ni m t p m ,...,trong (X, ., . ) luôn đư c g n v i chu n sinh b i ., . . N u không gian đ nh chu n tương ng đ y đ thì ta nói (X, ., . ) là không gian Hilbert. 1.2 Các tính ch t 1. B t đ ng th c Cauchy - Schwartz: | x, y | ≤ x . y 2. x + y 2 + x − y 2 = 2( x 2 + y 2) (đ ng th c bình hành). 3. N u lim xn = a, lim yn = b thì lim xn, yn = a, b Ví d 1 1. Trong C [a, b] các hàm th c liên t c trên [a, b] thì ánh x b (x, y ) → x, y = x(t)y (t)dt a là m t tích vô hư ng. Không gian (C [a, b], ., . ) không là không gian Hilbert.(xây d ng ví d tương t ph n không gian met- ric) 2. Trong l2, v i x = {λk }, y = {αk }, ta đ nh nghĩa ∞ x, y = λk αk k =1 thì ., . là tích vô hư ng, (l2, ., . ) là không gian Hilbert. 2 2 S tr c giao 2.1 Đ nh nghĩa Đ nh nghĩa 2 Cho không gian v i tích vô hư ng (X, ., . ) và x, y ∈ X, φ = M ⊂ X . 1. Ta nói x tr c giao v i y (vi t x⊥y ) n u x, y 2. N u x⊥y ∀y ∈ M thì ta vi t x⊥M . Ta ký hi u M ⊥ = {x ∈ X : x ⊥ M } . 2.2 Các tính ch t 1. N u x ⊥ M thì x ⊥ M ( M ch không gian con sinh b i M) 2. N u x ⊥ yn ∀n ∈ N∗ và lim yn = y thì x ⊥ y . Suy ra n u x ⊥ M thì cũng có x ⊥ M . 3. M ⊥ là m t không gian con đóng. 4. N u x1, . . . , xn đôi n t tr c giao thì 2 2 + . . . + xn 2(đ ng th c Pythagore) x1 + . . . + xn = x1 Đ nh lý 1 (v phân tích tr c giao) N u M là m t không gian con đóng c a không gian Hilbert (X, ., . ) thì m i x ∈ X có duy nh t phân tích d ng y ∈ M, z ∈ M ⊥ x = y + z, (1) Ph n t y trong (1) g i là hình chi u tr c giao c a x lên M và có tính ch t x − y = inf x − y . y ∈M 3 3 H tr c chu n. Chu i Fourier 3.1 Đ nh nghĩa Cho không gian Hilbert (X, ., . ) 1. H {e1, e2, . . .} ⊂ X g i là m t h tr c chu n n u 0 n ui=j ei, ej = 1 n ui=j = 1 ∀n ∈ N∗ và Như v y, {en} là h tr c chu n n u en ei ⊥ ej (i = j ). 2. H tr c chu n {en} g i là đ y đ , n u nó có tính ch t sau: (x ⊥ en ∀n = 1, 2, . . .) ⇒ x = θ. 3. N u {en} là h tr c chu n thì chu i ∞ x, en · en g i là chu i n=1 Fourier c a ph n t x theo h chu n {en}. Đ nh lý 2 Cho {en} là h tr c chu n trong không gian Hilbert (X, ., . ) và {λn} là m t dãy s . Ta xét chu i ∞ λnen (2) n=1 Ta có: ∞ 2 n=1 |λn | < ∞. 1. Ch ...
Tìm kiếm theo từ khóa liên quan:
giáo trình giáo án giáo trình cao đẳng giáo án cao đẳng giáo trình đại học giáo án đại họcTài liệu liên quan:
-
Giáo trình phân tích một số loại nghiệp vụ mới trong kinh doanh ngân hàng quản lý ngân quỹ p5
7 trang 473 0 0 -
MARKETING VÀ QUÁ TRÌNH KIỂM TRA THỰC HIỆN MARKETING
6 trang 300 0 0 -
QUY CHẾ THU THẬP, CẬP NHẬT SỬ DỤNG CƠ SỞ DỮ LIỆU DANH MỤC HÀNG HÓA BIỂU THUẾ
15 trang 209 1 0 -
BÀI GIẢNG KINH TẾ CHÍNH TRỊ MÁC - LÊNIN - TS. NGUYỄN VĂN LỊCH - 5
23 trang 207 0 0 -
Giới thiệu môn học Ngôn ngữ lập trình C++
5 trang 197 0 0 -
Giáo trình chứng khoán cổ phiếu và thị trường (Hà Hưng Quốc Ph. D.) - 4
41 trang 197 0 0 -
Giáo trình hướng dẫn phân tích các thao tác cơ bản trong computer management p6
5 trang 197 0 0 -
Hình thành hệ thống điều khiển trình tự xử lý các toán tử trong một biểu thức logic
50 trang 175 0 0 -
BÀI GIẢNG LÝ THUYẾT MẠCH THS. NGUYỄN QUỐC DINH - 1
30 trang 173 0 0 -
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG - NGÂN HÀNG ĐỀ THI HẾT HỌC PHẦN HỌC PHẦN: TOÁN KINH TẾ
9 trang 172 0 0