Danh mục

Giáo trình hình thành ứng dụng chế độ đánh giá giải thuật theo phương pháp tổng quan p2

Số trang: 10      Loại file: pdf      Dung lượng: 1.10 MB      Lượt xem: 7      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu 'giáo trình hình thành ứng dụng chế độ đánh giá giải thuật theo phương pháp tổng quan p2', công nghệ thông tin, kỹ thuật lập trình phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Giáo trình hình thành ứng dụng chế độ đánh giá giải thuật theo phương pháp tổng quan p2 h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N . y y bu bu Giải thuật Kĩ thuật phân tích giải thuật to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Như vậy một cách hợp lý là ta xét tỷ suất tăng của hàm thời gian thực hiện chương trình thay vì xét chính bản thân thời gian thực hiện. Cho một hàm T(n), T(n) gọi là có độ phức tạp f(n) nếu tồn tại các hằng C, N0 sao cho T(n) ≤ Cf(n) với mọi n ≥ N0 (tức là T(n) có tỷ suất tăng là f(n)) và kí hiệu T(n) là O(f(n)) (đọc là “ô của f(n)”) Ví dụ 1-5: T(n)= (n+1)2 có tỷ suất tăng là n2 nên T(n)= (n+1)2 là O(n2) Chú ý: O(C.f(n))=O(f(n)) với C là hằng số. Ðặc biệt O(C)=O(1) Nói cách khác độ phức tạp tính toán của giải thuật là một hàm chặn trên của hàm thời gian. Vì hằng nhân tử C trong hàm chặn trên không có ý nghĩa nên ta có thể bỏ qua vì vậy hàm thể hiện độ phức tạp có các dạng thường gặp sau: log2n, n, nlog2n, n2, n3, 2n, n!, nn. Ba hàm cuối cùng ta gọi là dạng hàm mũ, các hàm khác gọi là hàm đa thức. Một giải thuật mà thời gian thực hiện có độ phức tạp là một hàm đa thức thì chấp nhận được tức là có ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: