Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai thương phiếu p1
Số trang: 5
Loại file: pdf
Dung lượng: 429.46 KB
Lượt xem: 5
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu 'giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai thương phiếu p1', tài chính - ngân hàng, đầu tư chứng khoán phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai thương phiếu p1 Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai 3.2.3. Sự tương đương của hai thươngphiếu thương phiếu 3.2.3.1.Khái niệm Hai thương phiếu được gọi là tương đương với nhau ở một thời điểm nhất định trong trường hợp giá trị hiện tại của chúng bằng nhau nếu chúng được chiết khấu với cùng một lãi suất và cùng phương thức chiết khấu. Thời điểm mà những thương phiếu tương đương với nhau gọi là thời điểm tương đương (ngày ngang giá). Gọi: C1 và C2 là mệnh giá tương ứng của 2 thương phiếu. V01 và V02 là giá trị hiện tại tương ứng của 2 thương phiếu. Hai thương phiếu này tương đương với nhau khi V01 = V02. Hay: Trong đó: - V01 và V02: hiện giá của hai thương phiếu. - n1: số ngày tính từ ngày tương đương đến ngày đáo hạn của thương phiếu thứ nhất. - n2: số ngày tính từ ngày tương đương đến ngày đáo hạn của thương phiếu thứ hai. - d: lãi suất chiết khấu áp dụng cho hai thương phiếu. Tương tự, một thương phiếu được gọi là tương đương với nhiều thương phiếu khác nếu hiện giá của nó bằng tổng hiện giá của các thương phiếu khác khi chúng được chiết khấu với cùng một lãi suất và cùng phương thức chiết khấu.3.2.3.2.Xác định thời điểm tương đương Gọi: x: số ngày tính từ ngày ngang giá đến ngày đáo hạn thứ nhất (ngày đáo hạn cuả thương phiếu đáo hạn sớm hơn trong hai thương phiếu). y: số ngày tính từ ngày đáo hạn thứ nhất đến ngày đáo hạn thứ hai. Hai thương phiếu này tương đương khi: V01 = V02. 360C1 – C1.x.d = 360C2 – C2.x.d - C2.y.d (C2 – C1).x.d = 360(C2-C1)- C2.y.d Nhận xét: - Ngày ngang giá (nếu có) phải ở trước ngày đáo hạn gần nhất. - Ngày ngang giá phải sau ngày lập của hai thương phiếu. - Nếu hai thương phiếu có cùng mệnh giá nhưng kỳ hạn khác nhau hoặc có ngày đáo hạn khác nhau thì chúng sẽ không tương đương. - Hai thương phiếu sẽ luôn tương đương nếu chúng có cùng mệnh giá và cùng ngày đáo hạn. - Trong trường hợp khác, nếu hai thương phiếu có mệnh giá khác nhau và ngày đáo hạn khác nhau thì chúng sẽ tương đương vào một ngày nào đó. Khái niệm ngang giá được ứng dụng trong thực tế khi người ta muốn thay đổi điều kiện của thương phiếu (thay đổi mệnh giá, ngày đáo hạn) hoặc trong mục đích trao đổi thương phiếu. Ví dụ: Một doanh nghiệp có ba thương phiếu sau: - Thương phiếu 1: Mệnh giá 100.000.000 VND, ngày đáo hạn là 16/11. - Thương phiếu 2: Mệnh giá 150.000.000 VND, ngày đáo hạn là 30/11. - Thương phiếu 3: Mệnh giá 250 triêụ VND, ngày đáo hạn là 31/12. Ngày 01/09, doanh nghiệp đó đề nghị thay 3 thương phiếu trên bằng một thương phiếu có kỳ hạn là 05/12. Hãy tính mệnh giá của thương phiếu đó biết lãi suất chiết khấu là 10%/năm. Giải: C1 = 100.000.000 VND; n1 = 01/09 -> 16/11 = 77. C2 = 150.000.000 VND; n2 = 01/09 -> 30/11 = 91. C3 = 250.000.000 VND; n3 = 01/09 -> 31/12 = 122. Gọi V01, V02, V03 lần lượt là giá trị hiện tại của ba thương phiếu trên. Thương phiếu tương đương với ba thương phiếu trên có mệnh giá là C, hiện giá là V0 và kỳ hạn n = 01/09 -> 05/12 = 96. Áp dụng khái niệm ngang giá, ta có: ) Suy ra: C = 499,072500.000.000 VND = 499.072.500 VND 3.2.4. Kỳ hạn trung bình của thương phiếu Kỳ hạn trung bình của nhiều thương phiếu là kỳ hạn của thương phiếu tương đương có mệnh giá bằng tổng mệnh giá của các thương phiếu đó. Gọi X: thương phiếu tương đương và có tổng mệnh giá bằng tổng mệnh giá của ba thương phiếu A, B, C. : kỳ hạn trung bình của A, B, C; cũng là kỳ hạn của thương phiếu X. Ta có: V0X = V0A + V0B + V0C (1) và CX = CA + CB + CC (2) (1): . (2) : Trong đó : Ck là mệnh giá của thương phiếu k. nk là kỳ hạn của thương phiếu k. Tiết 4, 5: 3.3. Chiết khấu thương phiếu theo lãi kép Ở phần trên, chúng ta đã nghiên cứu chiết khấu theo lãi đơn và nhận thấy giữa số tiền chiết khấu thương mại Ec và số tiền chiết khấu hợp lý Er có một sai số (Ec>Er). Nhưng sai số đó là không đáng kể vì đây là nghiệp vụ tài chính ngắn hạn (dưới một năm). Trong nghiệp vụ tài chính dài hạn (trên một năm), thời hạn của thương phiếu cách khá xa thời điểm xin chiết khấu, do đó, nghiệp vụ chiết khấu thương mại không còn ph ...
Nội dung trích xuất từ tài liệu:
Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai thương phiếu p1 Giáo trình hướng dẫn phân tích kỳ hạn trung bình của thương phiếu và sự tương đương của hai 3.2.3. Sự tương đương của hai thươngphiếu thương phiếu 3.2.3.1.Khái niệm Hai thương phiếu được gọi là tương đương với nhau ở một thời điểm nhất định trong trường hợp giá trị hiện tại của chúng bằng nhau nếu chúng được chiết khấu với cùng một lãi suất và cùng phương thức chiết khấu. Thời điểm mà những thương phiếu tương đương với nhau gọi là thời điểm tương đương (ngày ngang giá). Gọi: C1 và C2 là mệnh giá tương ứng của 2 thương phiếu. V01 và V02 là giá trị hiện tại tương ứng của 2 thương phiếu. Hai thương phiếu này tương đương với nhau khi V01 = V02. Hay: Trong đó: - V01 và V02: hiện giá của hai thương phiếu. - n1: số ngày tính từ ngày tương đương đến ngày đáo hạn của thương phiếu thứ nhất. - n2: số ngày tính từ ngày tương đương đến ngày đáo hạn của thương phiếu thứ hai. - d: lãi suất chiết khấu áp dụng cho hai thương phiếu. Tương tự, một thương phiếu được gọi là tương đương với nhiều thương phiếu khác nếu hiện giá của nó bằng tổng hiện giá của các thương phiếu khác khi chúng được chiết khấu với cùng một lãi suất và cùng phương thức chiết khấu.3.2.3.2.Xác định thời điểm tương đương Gọi: x: số ngày tính từ ngày ngang giá đến ngày đáo hạn thứ nhất (ngày đáo hạn cuả thương phiếu đáo hạn sớm hơn trong hai thương phiếu). y: số ngày tính từ ngày đáo hạn thứ nhất đến ngày đáo hạn thứ hai. Hai thương phiếu này tương đương khi: V01 = V02. 360C1 – C1.x.d = 360C2 – C2.x.d - C2.y.d (C2 – C1).x.d = 360(C2-C1)- C2.y.d Nhận xét: - Ngày ngang giá (nếu có) phải ở trước ngày đáo hạn gần nhất. - Ngày ngang giá phải sau ngày lập của hai thương phiếu. - Nếu hai thương phiếu có cùng mệnh giá nhưng kỳ hạn khác nhau hoặc có ngày đáo hạn khác nhau thì chúng sẽ không tương đương. - Hai thương phiếu sẽ luôn tương đương nếu chúng có cùng mệnh giá và cùng ngày đáo hạn. - Trong trường hợp khác, nếu hai thương phiếu có mệnh giá khác nhau và ngày đáo hạn khác nhau thì chúng sẽ tương đương vào một ngày nào đó. Khái niệm ngang giá được ứng dụng trong thực tế khi người ta muốn thay đổi điều kiện của thương phiếu (thay đổi mệnh giá, ngày đáo hạn) hoặc trong mục đích trao đổi thương phiếu. Ví dụ: Một doanh nghiệp có ba thương phiếu sau: - Thương phiếu 1: Mệnh giá 100.000.000 VND, ngày đáo hạn là 16/11. - Thương phiếu 2: Mệnh giá 150.000.000 VND, ngày đáo hạn là 30/11. - Thương phiếu 3: Mệnh giá 250 triêụ VND, ngày đáo hạn là 31/12. Ngày 01/09, doanh nghiệp đó đề nghị thay 3 thương phiếu trên bằng một thương phiếu có kỳ hạn là 05/12. Hãy tính mệnh giá của thương phiếu đó biết lãi suất chiết khấu là 10%/năm. Giải: C1 = 100.000.000 VND; n1 = 01/09 -> 16/11 = 77. C2 = 150.000.000 VND; n2 = 01/09 -> 30/11 = 91. C3 = 250.000.000 VND; n3 = 01/09 -> 31/12 = 122. Gọi V01, V02, V03 lần lượt là giá trị hiện tại của ba thương phiếu trên. Thương phiếu tương đương với ba thương phiếu trên có mệnh giá là C, hiện giá là V0 và kỳ hạn n = 01/09 -> 05/12 = 96. Áp dụng khái niệm ngang giá, ta có: ) Suy ra: C = 499,072500.000.000 VND = 499.072.500 VND 3.2.4. Kỳ hạn trung bình của thương phiếu Kỳ hạn trung bình của nhiều thương phiếu là kỳ hạn của thương phiếu tương đương có mệnh giá bằng tổng mệnh giá của các thương phiếu đó. Gọi X: thương phiếu tương đương và có tổng mệnh giá bằng tổng mệnh giá của ba thương phiếu A, B, C. : kỳ hạn trung bình của A, B, C; cũng là kỳ hạn của thương phiếu X. Ta có: V0X = V0A + V0B + V0C (1) và CX = CA + CB + CC (2) (1): . (2) : Trong đó : Ck là mệnh giá của thương phiếu k. nk là kỳ hạn của thương phiếu k. Tiết 4, 5: 3.3. Chiết khấu thương phiếu theo lãi kép Ở phần trên, chúng ta đã nghiên cứu chiết khấu theo lãi đơn và nhận thấy giữa số tiền chiết khấu thương mại Ec và số tiền chiết khấu hợp lý Er có một sai số (Ec>Er). Nhưng sai số đó là không đáng kể vì đây là nghiệp vụ tài chính ngắn hạn (dưới một năm). Trong nghiệp vụ tài chính dài hạn (trên một năm), thời hạn của thương phiếu cách khá xa thời điểm xin chiết khấu, do đó, nghiệp vụ chiết khấu thương mại không còn ph ...
Tìm kiếm theo từ khóa liên quan:
giáo trình đại học tài liệu mạng giáo trình cơ điện giáo trình thiết kế tài liệu kế toánTài liệu liên quan:
-
Giáo trình phân tích một số loại nghiệp vụ mới trong kinh doanh ngân hàng quản lý ngân quỹ p5
7 trang 473 0 0 -
MARKETING VÀ QUÁ TRÌNH KIỂM TRA THỰC HIỆN MARKETING
6 trang 301 0 0 -
122 trang 217 0 0
-
QUY CHẾ THU THẬP, CẬP NHẬT SỬ DỤNG CƠ SỞ DỮ LIỆU DANH MỤC HÀNG HÓA BIỂU THUẾ
15 trang 209 1 0 -
BÀI GIẢNG KINH TẾ CHÍNH TRỊ MÁC - LÊNIN - TS. NGUYỄN VĂN LỊCH - 5
23 trang 209 0 0 -
Giáo trình hướng dẫn phân tích các thao tác cơ bản trong computer management p6
5 trang 198 0 0 -
Giáo trình chứng khoán cổ phiếu và thị trường (Hà Hưng Quốc Ph. D.) - 4
41 trang 197 0 0 -
BÀI GIẢNG LÝ THUYẾT MẠCH THS. NGUYỄN QUỐC DINH - 1
30 trang 173 0 0 -
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG - NGÂN HÀNG ĐỀ THI HẾT HỌC PHẦN HỌC PHẦN: TOÁN KINH TẾ
9 trang 172 0 0 -
Giáo trình phân tích giai đoạn tăng lãi suất và giá trị của tiền tệ theo thời gian tích lũy p10
5 trang 169 0 0