Giáo trình lý thuyết kỹ thuật điều khiển tự động 10
Số trang: 19
Loại file: pdf
Dung lượng: 313.96 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Một ứng dụng đáng chú ý của điều khiển động học là trong lĩnh vực điều khiển máy bay. Anh em nhà Wright đã lần đầu tiên thử nghiệm chuyến bay thành công vào ngày 17 tháng 12, năm 1903 và được đánh dấu bởi khả năng điều khiển máy bay của họ trong thời gian đáng kể (nhiều hơn so với khả năng sinh ra lực nâng từ cánh máy bay, đã được biết). Điều khiển của máy bay rất cần thiết cho sự an toàn của chuyến bay....
Nội dung trích xuất từ tài liệu:
Giáo trình lý thuyết kỹ thuật điều khiển tự động 10 173 THIEÁT KEÁ HEÄ THOÁNG ÑIEÀU KHIEÅN LIEÂN TUÏC Hình 6.2 Heä thoáng ñieàu khieån hoài tieáp traïng thaùi Quaù trình thieát keá heä thoáng laø quaù trình ñoøi hoûi tính saùng taïo do trong khi thieát keá thöôøng coù nhieàu thoâng soá phaûi choïn löïa. Ngöôøi thieát keá caàn thieát phaûi hieåu ñöôïc aûnh höôûng cuûa caùc khaâu hieäu chænh ñeán chaát löôïng cuûa heä thoáng vaø baûn chaát cuûa töøng phöông phaùp thieát keá thì môùi coù theå thieát keá ñöôïc heä thoáng coù chaát löôïng toát. Do ñoù caùc phöông phaùp thieát keá trình baøy trong chöông naøy chæ mang tính gôïi yù, ñoù laø nhöõng caùch thöôøng ñöôïc söû duïng chöù khoâng phaûi laø phöông phaùp baét buoäc phaûi tuaân theo. Vieäc aùp duïng moät caùch maùy moùc thöôøng khoâng ñaït ñöôïc keát quaû mong muoán trong thöïc teá. Duø thieát keá theo phöông phaùp naøo yeâu caàu cuoái cuøng vaãn laø thoûa maõn chaát löôïng mong muoán, caùch thieát keá, caùch choïn löïa thoâng soá khoâng quan troïng. Tröôùc khi xeùt ñeán caùc phöông phaùp thieát keá boä ñieàu khieån, chuùng ta xeùt aûnh höôûng cuûa caùc boä ñieàu khieån ñeán chaát löôïng cuûa heä thoáng. Chöông naøy chæ trình baøy boä ñieàu khieån döôùi daïng moâ taû toaùn hoïc, ñoái vôùi maïch ñieàu khieån cuï theå, xem laïi chöông 2. 6.2 AÛNH HÖÔÛNG CUÛA CAÙC BOÄ ÑIEÀU KHIEÅN ÑEÁN CHAÁT LÖÔÏNG CUÛA HEÄ THOÁNG 6.2.1 AÛnh höôûng cuûa cöïc vaø zero Trong muïc naøy chuùng ta khaûo saùt aûnh höôûng cuûa vieäc theâm cöïc vaø zero vaøo heä thoáng baèng caùch döïa vaøo quyõ ñaïo nghieäm soá. Ta thaáy: - Khi theâm moät cöïc coù phaàn thöïc aâm vaøo haøm truyeàn heä hôû thì QÑNS cuûa heä kín coù xu höôùng tieán gaàn veà phía truïc aûo (H.6.3), heä thoáng seõ keùm oån ñònh hôn, ñoä döï tröõ bieân vaø ñoä döï tröõ pha giaûm, ñoä voït loá taêng. 174 CHÖÔNG 6 Hình 6.3 Söï thay ñoåi daïng QÑNS khi theâm cöïc vaøo heä thoáng - Khi theâm moät zero coù phaàn thöïc aâm vaøo haøm truyeàn heä hôû thì QÑNS cuûa heä kín coù xu höôùng tieán xa truïc aûo (H.6.4), do ñoù heä thoáng seõ oån ñònh hôn, ñoä döï tröõ bieân vaø ñoä döï tröõ pha taêng, ñoä voït loá giaûm. Hình 6.4 Söï thay ñoåi daïng QÑNS khi theâm zero vaøo heä thoáng 6.2.2 AÛnh höôûng cuûa hieäu chænh sôùm treã pha 1- Hieäu chænh sôùm pha 1 + αTs Haøm truyeàn: (α >1) (6.1) Gc ( s) = 1 + Ts 1 + αTjω Ñaëc tính taàn soá: Gc ( jω) = 1 + Tjω Hình 6.5 laø bieåu ñoà Bode cuûa khaâu hieäu chænh sôùm pha. Döïa vaøo bieåu ñoà Bode cuûa khaâu sôùm pha chuùng ta thaáy ñaëc tính pha luoân döông (ϕ(ω) > 0, ∀ω ), do ñoù tín hieäu ra luoân luoân sôùm pha hôn tín hieäu vaøo. Khaâu hieäu chænh sôùm pha laø moät boä loïc thoâng cao (xem bieåu ñoà Bode bieân ñoä), söû duïng khaâu hieäu chænh sôùm pha 175 THIEÁT KEÁ HEÄ THOÁNG ÑIEÀU KHIEÅN LIEÂN TUÏC seõ môû roäng ñöôïc baêng thoâng cuûa heä thoáng, laøm cho ñaùp öùng cuûa heä thoáng nhanh hôn, do ñoù khaâu hieäu chænh sôùm pha caûi thieän ñaùp öùng quaù ñoä. Tuy nhieân cuõng do taùc duïng môû roäng baêng thoâng maø khaâu hieäu chænh sôùm pha laøm cho heä thoáng nhaïy vôùi nhieãu taàn soá cao. Hình 6.5 Bieåu ñoà Bode cuûa khaâu hieäu chænh sôùm pha Caùc thoâng soá caàn chuù yù treân ñaëc tính taàn soá cuûa khaâu hieäu chænh sôùm pha: - Ñoä leäch pha cöïc ñaïi: α −1 ϕm a x = sin −1 (6.2) α +1 - Taàn soá taïi ñoù ñoä leäch pha cöïc ñaïi: 1 (6.3) ωm a x = Tα - Bieân ñoä taïi pha cöïc ñaïi: L( ωm a x ) = 10 lg α (6.4) 176 CHÖÔNG 6 Chöùng minh: 1 + jαTω (1 + jαTω)(1 − jTω) ϕ( ω) = a r g = arg 1 + T 2ω2 1 + jTω Tω( α − 1) = a r g 1 + αT2ω2 + jTω( α − 1) = a r ct a n 2 2 1 + αT ω Tω( α − 1) α −1 α −1 ≤ a r ct a n = a r ct a n = a r csin α +1 ( 2 α )Tω 2 α α −1 Do ñoù: ϕm a x = a r csin α +1 Daáu ñaúng thöùc xaûy ra khi: 1 = αT 2ωm a x ⇔ ωm a x = 1 /( T α ) 2 Thay ωm a x = 1 /( T α ) vaøo bieåu thöùc bieân ñoä cuûa khaâu sôùm pha ta deã daøng ruùt ra coâng thöùc (6.4). 2- Hieäu chænh treã pha 1 + αTs Haøm truyeàn: (α < 1 ) (6.5) Gc ( s) = 1 + Ts 1 + αTjω Ñaëc tính taàn soá: Gc ( jω) = 1 + Tjω Hình 6. ...
Nội dung trích xuất từ tài liệu:
Giáo trình lý thuyết kỹ thuật điều khiển tự động 10 173 THIEÁT KEÁ HEÄ THOÁNG ÑIEÀU KHIEÅN LIEÂN TUÏC Hình 6.2 Heä thoáng ñieàu khieån hoài tieáp traïng thaùi Quaù trình thieát keá heä thoáng laø quaù trình ñoøi hoûi tính saùng taïo do trong khi thieát keá thöôøng coù nhieàu thoâng soá phaûi choïn löïa. Ngöôøi thieát keá caàn thieát phaûi hieåu ñöôïc aûnh höôûng cuûa caùc khaâu hieäu chænh ñeán chaát löôïng cuûa heä thoáng vaø baûn chaát cuûa töøng phöông phaùp thieát keá thì môùi coù theå thieát keá ñöôïc heä thoáng coù chaát löôïng toát. Do ñoù caùc phöông phaùp thieát keá trình baøy trong chöông naøy chæ mang tính gôïi yù, ñoù laø nhöõng caùch thöôøng ñöôïc söû duïng chöù khoâng phaûi laø phöông phaùp baét buoäc phaûi tuaân theo. Vieäc aùp duïng moät caùch maùy moùc thöôøng khoâng ñaït ñöôïc keát quaû mong muoán trong thöïc teá. Duø thieát keá theo phöông phaùp naøo yeâu caàu cuoái cuøng vaãn laø thoûa maõn chaát löôïng mong muoán, caùch thieát keá, caùch choïn löïa thoâng soá khoâng quan troïng. Tröôùc khi xeùt ñeán caùc phöông phaùp thieát keá boä ñieàu khieån, chuùng ta xeùt aûnh höôûng cuûa caùc boä ñieàu khieån ñeán chaát löôïng cuûa heä thoáng. Chöông naøy chæ trình baøy boä ñieàu khieån döôùi daïng moâ taû toaùn hoïc, ñoái vôùi maïch ñieàu khieån cuï theå, xem laïi chöông 2. 6.2 AÛNH HÖÔÛNG CUÛA CAÙC BOÄ ÑIEÀU KHIEÅN ÑEÁN CHAÁT LÖÔÏNG CUÛA HEÄ THOÁNG 6.2.1 AÛnh höôûng cuûa cöïc vaø zero Trong muïc naøy chuùng ta khaûo saùt aûnh höôûng cuûa vieäc theâm cöïc vaø zero vaøo heä thoáng baèng caùch döïa vaøo quyõ ñaïo nghieäm soá. Ta thaáy: - Khi theâm moät cöïc coù phaàn thöïc aâm vaøo haøm truyeàn heä hôû thì QÑNS cuûa heä kín coù xu höôùng tieán gaàn veà phía truïc aûo (H.6.3), heä thoáng seõ keùm oån ñònh hôn, ñoä döï tröõ bieân vaø ñoä döï tröõ pha giaûm, ñoä voït loá taêng. 174 CHÖÔNG 6 Hình 6.3 Söï thay ñoåi daïng QÑNS khi theâm cöïc vaøo heä thoáng - Khi theâm moät zero coù phaàn thöïc aâm vaøo haøm truyeàn heä hôû thì QÑNS cuûa heä kín coù xu höôùng tieán xa truïc aûo (H.6.4), do ñoù heä thoáng seõ oån ñònh hôn, ñoä döï tröõ bieân vaø ñoä döï tröõ pha taêng, ñoä voït loá giaûm. Hình 6.4 Söï thay ñoåi daïng QÑNS khi theâm zero vaøo heä thoáng 6.2.2 AÛnh höôûng cuûa hieäu chænh sôùm treã pha 1- Hieäu chænh sôùm pha 1 + αTs Haøm truyeàn: (α >1) (6.1) Gc ( s) = 1 + Ts 1 + αTjω Ñaëc tính taàn soá: Gc ( jω) = 1 + Tjω Hình 6.5 laø bieåu ñoà Bode cuûa khaâu hieäu chænh sôùm pha. Döïa vaøo bieåu ñoà Bode cuûa khaâu sôùm pha chuùng ta thaáy ñaëc tính pha luoân döông (ϕ(ω) > 0, ∀ω ), do ñoù tín hieäu ra luoân luoân sôùm pha hôn tín hieäu vaøo. Khaâu hieäu chænh sôùm pha laø moät boä loïc thoâng cao (xem bieåu ñoà Bode bieân ñoä), söû duïng khaâu hieäu chænh sôùm pha 175 THIEÁT KEÁ HEÄ THOÁNG ÑIEÀU KHIEÅN LIEÂN TUÏC seõ môû roäng ñöôïc baêng thoâng cuûa heä thoáng, laøm cho ñaùp öùng cuûa heä thoáng nhanh hôn, do ñoù khaâu hieäu chænh sôùm pha caûi thieän ñaùp öùng quaù ñoä. Tuy nhieân cuõng do taùc duïng môû roäng baêng thoâng maø khaâu hieäu chænh sôùm pha laøm cho heä thoáng nhaïy vôùi nhieãu taàn soá cao. Hình 6.5 Bieåu ñoà Bode cuûa khaâu hieäu chænh sôùm pha Caùc thoâng soá caàn chuù yù treân ñaëc tính taàn soá cuûa khaâu hieäu chænh sôùm pha: - Ñoä leäch pha cöïc ñaïi: α −1 ϕm a x = sin −1 (6.2) α +1 - Taàn soá taïi ñoù ñoä leäch pha cöïc ñaïi: 1 (6.3) ωm a x = Tα - Bieân ñoä taïi pha cöïc ñaïi: L( ωm a x ) = 10 lg α (6.4) 176 CHÖÔNG 6 Chöùng minh: 1 + jαTω (1 + jαTω)(1 − jTω) ϕ( ω) = a r g = arg 1 + T 2ω2 1 + jTω Tω( α − 1) = a r g 1 + αT2ω2 + jTω( α − 1) = a r ct a n 2 2 1 + αT ω Tω( α − 1) α −1 α −1 ≤ a r ct a n = a r ct a n = a r csin α +1 ( 2 α )Tω 2 α α −1 Do ñoù: ϕm a x = a r csin α +1 Daáu ñaúng thöùc xaûy ra khi: 1 = αT 2ωm a x ⇔ ωm a x = 1 /( T α ) 2 Thay ωm a x = 1 /( T α ) vaøo bieåu thöùc bieân ñoä cuûa khaâu sôùm pha ta deã daøng ruùt ra coâng thöùc (6.4). 2- Hieäu chænh treã pha 1 + αTs Haøm truyeàn: (α < 1 ) (6.5) Gc ( s) = 1 + Ts 1 + αTjω Ñaëc tính taàn soá: Gc ( jω) = 1 + Tjω Hình 6. ...
Tìm kiếm theo từ khóa liên quan:
Điều khiển tự động Giáo trình kỹ thuật cơ kỹ thuật hệ thống điều khiển liên tục thiết kế hệ thống điều khiển xây dựng hệ thống điều khiển.Gợi ý tài liệu liên quan:
-
Bài giảng Lý thuyết điều khiển tự động: Bài 4
56 trang 310 0 0 -
105 trang 192 1 0
-
49 trang 156 0 0
-
Báo cáo Thực hành lý thuyết điều khiển tự động
14 trang 151 0 0 -
Đồ án tốt nghiệp: Thiết kế hệ thống điều khiển giám sát trạm trộn bê tông sử dụng PLC S7 – 1200
118 trang 147 1 0 -
156 trang 127 0 0
-
Giáo trình lý thuyết kỹ thuật điều khiển tự động 2
19 trang 119 0 0 -
NGÂN HÀNG ĐỀ THI Môn: CƠ SỞ ĐIỀU KHIỂN TỰ ĐỘNG Dùng cho hệ ĐHTX, ngành Điện tử - Viễn thông
53 trang 114 1 0 -
Luận văn Điều khiển máy công nghiệp bằng thiết bị lập trình
98 trang 112 0 0 -
CƠ SỞ ĐIỀU KHIỂN TỰ ĐỘNG - Học Viện Bưu Chính Viễn Thông
99 trang 109 0 0