GIÁO TRÌNH MATLAB CĂN BẢN - CHƯƠNG 6
Số trang: 11
Loại file: pdf
Dung lượng: 271.43 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
MATLAB VÀ ĐIỀU KHIỂN TỰ ĐỘNG
§1. CÁC VẤN ĐỀ CHUNG 1. Các dạng mô hình hệ thống: Để xây dựng mô hình của hệ thống, MATLAB cung cấp một số lệnh. Mô hình hệ thống mô tả bằng hàm truyền được xây dựng nhờ lệnh tf(ts,ms) với ts là đa thức tử số và ms là đa thức mẫu số. Hàm zpk(z, p, k) với z là vec tơ điểm không, p là vec tơ điểm cực và k là hệ số khuyếch đại tạo nên mô hình điểm không‐điểm cực. ...
Nội dung trích xuất từ tài liệu:
GIÁO TRÌNH MATLAB CĂN BẢN - CHƯƠNG 6 CHƯƠNG 6: MATLAB VÀ ĐIỀU KHIỂN TỰ ĐỘNG §1. CÁC VẤN ĐỀ CHUNG 1. Các dạng mô hình hệ thống: Để xây dựng mô hình của hệ thống, MATLAB cung cấp một số lệnh. Mô hình hệ thống mô tả bằng hàm truyền được xây dựng nhờ lệnh tf(ts,ms) với ts là đa thức tử số và ms là đa thức mẫu số. Hàm zpk(z, p, k) với z là vec tơ điểm không, p là vec tơ điểm cực và k là hệ số khuyếch đại tạo nên mô hình điểm không‐điểm cực. Hàm ss(a, b, cʹ, d) với a, b, c, d là các ma trận tạo nên mô hình không gian‐trạng thái. Ví dụ: Ta tạo ra một số mô hình nhờ các lệnh MATLAB sau(lưu trong ct6_1.m): clc ts = [1 2]; ms = [1 5 4]; sys1 = tf(ts,ms) sys2 = zpk([‐6 1 1],[‐5 1],3) sys3 = ss([1 2; 3 4],[1 1; 0 1],[0 1; 1 2; 3 1],0) Kết quả là: Transfer function: s + 2 ‐‐‐‐‐‐‐‐‐‐‐‐‐ s^2 + 5 s + 4 Zero/pole/gain: 3 (s+6) (s‐1)^2 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ (s+5) (s‐1) a = x1 x2 x1 1 2 x2 3 4 b = u1 u2 x1 1 1 x2 0 1 122 c = x1 x2 y1 0 1 y2 1 2 y3 3 1 d = u1 u2 y1 0 0 y2 0 0 y3 0 0 Continuous‐time model. 2. Điểm cực và điểm zero của hàm truyền: Để biến đổi hệ thống cho bởi hàm truyền thành hệ cho bởi điểm cực, điểm zero và hệ số khuếch đại dùng hàm tf2zp. Ta cũng có thể dùng hàm pole(sys) để tìm điểm cực của hệ thống sys và dung hàm zero(sys) để tìm điểm không của hệ thống sys Ví dụ: Cho hàm truyền: s 3 + 11s 2 + 30s H(s) = 4 s + 9s 3 + 45s 2 + 87 s + 50 Ta cần tìm các điểm cực p, điểm zero z và hệ số khuếch đại k của nó. Ta dùng các lệnh MATLAB sau(lưu trong ct6_2.m): ts = [1 11 30 0]; ms = [1 9 45 87 50]; [z,p,k] = tf2zp(ts,ms) z = 0 ‐6 ‐5 p = ‐3.0 + 4.0i ‐3.0 ‐ 4.0i ‐2.0 ‐1.0 k = 1 Như vậy: 123 ms = [1 2*z*wn wn^2]; sys = tf(ts,ms); t = 0:0.02:4; c = step(sys,t); plot(t,c) Từ sơ đồ khối ta có: C(s) d =2 R(s) s + (de + 1)s + d Phương trình đặc tính là: s2 + (de + 1)s + d = s2 + 2ωnζs + ω2 n Với ω2 = wn = 0.28 và z = ζ = 4.0906 ta có d = 16.733 và e = 0.077 n Khi có một hàm truyền ta có thể xác định hệ số tắt ζ và tần số tự nhiên ωn bằng lệnh damp. Ví dụ: Cho hệ có hàm truyền: 2 s 2 + 5s + 1 H(s) = 2 s + 2s + 3 Tìm hệ số tắt ζ và tần số tự nhiên ωn. Các lệnh MATLAB (lưu trong ct6_22.m) như sau: h = tf([2 5 1],[1 2 3]); damp(h) Eigenvalue Damping Freq. (rad/s) ‐1.00e+000 + 1.41e+000i 5.77e‐001 1.73e+000 ‐1.00e+000 ‐ 1.41e+000i 5.77e‐001 1.73e+000 2. Đáp ứng trong miền thời gian của hệ thống: a. Đáp giá trị ban đầu: Đáp ứng giá trị ban đầu mô tả phản ứng của hệ khi không có kích thích dầu vào nhưng tồn tại các giá trị ban đầu của vec tơ trạng thái x0. Phản ứng đó được gọi là chuyển động tự do của hệ. Đáp ứng này được xác định bằng hàm initial. Ta có các lệnh MATLAB tìm đáp ứng ban đầu của một hệ thống (lưu trong ct6_23.m)như sau: clc a = [‐0.5572 ‐0.7814;0.7814 0]; c = [1.9691 6.4493]; x0 = [1 ; 0] sys = ss(a,[],c,[]); initial(sys,x0) 134 ...
Nội dung trích xuất từ tài liệu:
GIÁO TRÌNH MATLAB CĂN BẢN - CHƯƠNG 6 CHƯƠNG 6: MATLAB VÀ ĐIỀU KHIỂN TỰ ĐỘNG §1. CÁC VẤN ĐỀ CHUNG 1. Các dạng mô hình hệ thống: Để xây dựng mô hình của hệ thống, MATLAB cung cấp một số lệnh. Mô hình hệ thống mô tả bằng hàm truyền được xây dựng nhờ lệnh tf(ts,ms) với ts là đa thức tử số và ms là đa thức mẫu số. Hàm zpk(z, p, k) với z là vec tơ điểm không, p là vec tơ điểm cực và k là hệ số khuyếch đại tạo nên mô hình điểm không‐điểm cực. Hàm ss(a, b, cʹ, d) với a, b, c, d là các ma trận tạo nên mô hình không gian‐trạng thái. Ví dụ: Ta tạo ra một số mô hình nhờ các lệnh MATLAB sau(lưu trong ct6_1.m): clc ts = [1 2]; ms = [1 5 4]; sys1 = tf(ts,ms) sys2 = zpk([‐6 1 1],[‐5 1],3) sys3 = ss([1 2; 3 4],[1 1; 0 1],[0 1; 1 2; 3 1],0) Kết quả là: Transfer function: s + 2 ‐‐‐‐‐‐‐‐‐‐‐‐‐ s^2 + 5 s + 4 Zero/pole/gain: 3 (s+6) (s‐1)^2 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ (s+5) (s‐1) a = x1 x2 x1 1 2 x2 3 4 b = u1 u2 x1 1 1 x2 0 1 122 c = x1 x2 y1 0 1 y2 1 2 y3 3 1 d = u1 u2 y1 0 0 y2 0 0 y3 0 0 Continuous‐time model. 2. Điểm cực và điểm zero của hàm truyền: Để biến đổi hệ thống cho bởi hàm truyền thành hệ cho bởi điểm cực, điểm zero và hệ số khuếch đại dùng hàm tf2zp. Ta cũng có thể dùng hàm pole(sys) để tìm điểm cực của hệ thống sys và dung hàm zero(sys) để tìm điểm không của hệ thống sys Ví dụ: Cho hàm truyền: s 3 + 11s 2 + 30s H(s) = 4 s + 9s 3 + 45s 2 + 87 s + 50 Ta cần tìm các điểm cực p, điểm zero z và hệ số khuếch đại k của nó. Ta dùng các lệnh MATLAB sau(lưu trong ct6_2.m): ts = [1 11 30 0]; ms = [1 9 45 87 50]; [z,p,k] = tf2zp(ts,ms) z = 0 ‐6 ‐5 p = ‐3.0 + 4.0i ‐3.0 ‐ 4.0i ‐2.0 ‐1.0 k = 1 Như vậy: 123 ms = [1 2*z*wn wn^2]; sys = tf(ts,ms); t = 0:0.02:4; c = step(sys,t); plot(t,c) Từ sơ đồ khối ta có: C(s) d =2 R(s) s + (de + 1)s + d Phương trình đặc tính là: s2 + (de + 1)s + d = s2 + 2ωnζs + ω2 n Với ω2 = wn = 0.28 và z = ζ = 4.0906 ta có d = 16.733 và e = 0.077 n Khi có một hàm truyền ta có thể xác định hệ số tắt ζ và tần số tự nhiên ωn bằng lệnh damp. Ví dụ: Cho hệ có hàm truyền: 2 s 2 + 5s + 1 H(s) = 2 s + 2s + 3 Tìm hệ số tắt ζ và tần số tự nhiên ωn. Các lệnh MATLAB (lưu trong ct6_22.m) như sau: h = tf([2 5 1],[1 2 3]); damp(h) Eigenvalue Damping Freq. (rad/s) ‐1.00e+000 + 1.41e+000i 5.77e‐001 1.73e+000 ‐1.00e+000 ‐ 1.41e+000i 5.77e‐001 1.73e+000 2. Đáp ứng trong miền thời gian của hệ thống: a. Đáp giá trị ban đầu: Đáp ứng giá trị ban đầu mô tả phản ứng của hệ khi không có kích thích dầu vào nhưng tồn tại các giá trị ban đầu của vec tơ trạng thái x0. Phản ứng đó được gọi là chuyển động tự do của hệ. Đáp ứng này được xác định bằng hàm initial. Ta có các lệnh MATLAB tìm đáp ứng ban đầu của một hệ thống (lưu trong ct6_23.m)như sau: clc a = [‐0.5572 ‐0.7814;0.7814 0]; c = [1.9691 6.4493]; x0 = [1 ; 0] sys = ss(a,[],c,[]); initial(sys,x0) 134 ...
Tìm kiếm theo từ khóa liên quan:
matlab căn bản phương trình vi phân giao diện đồ họa đại số tuyến tính điều khiển tự độngGợi ý tài liệu liên quan:
-
Bài giảng Lý thuyết điều khiển tự động: Bài 4
56 trang 311 0 0 -
Cách tính nhanh giá trị riêng của ma trận vuông cấp 2 và cấp 3
4 trang 274 0 0 -
1 trang 240 0 0
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 231 0 0 -
Giáo trình Phương pháp tính: Phần 2
204 trang 206 0 0 -
Báo cáo Thực hành lý thuyết điều khiển tự động
14 trang 152 0 0 -
Đề cương chi tiết học phần: Toán giải tích - ĐH Kinh tế-Kỹ thuật Công nghiệp
8 trang 132 0 0 -
Giáo trình lý thuyết kỹ thuật điều khiển tự động 2
19 trang 119 0 0 -
NGÂN HÀNG ĐỀ THI Môn: CƠ SỞ ĐIỀU KHIỂN TỰ ĐỘNG Dùng cho hệ ĐHTX, ngành Điện tử - Viễn thông
53 trang 114 1 0 -
119 trang 114 0 0