Giao trinh matlab v5.2 P7
Số trang: 11
Loại file: pdf
Dung lượng: 239.65 KB
Lượt xem: 1
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Ngôn ngữ có kiểu yếu không quá khắt khe trong các qui tắc về kiểu hoặc cho phép một cơ chế tường minh để xử lý các vi phạm. Thường nó cho phép hành xử các biểu hiện chưa được định nghĩa trước, các vi phạm về sự phân đoạn (segmentation), hay là các biểu hiện không an toàn khác khi mà các kiểu bị gán giá trị một cách không đúng.
Nội dung trích xuất từ tài liệu:
Giao trinh matlab v5.2 P7Ch−¬ng 4 - §å ho¹ hai chiÒu ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ H×nh 4.2 Quay thùc thÓ quanh trôc x3 Trong hÖ to¹ ®é kh«ng gian th−êng (x, y) ®Ó biÓu diÔn ®iÎm ë v« cïng ÝtnhÊt trong hai gi¸ trÞ cña ®iÓm = α. Nh−ng trong hÖ to¹ ®é thuÇn nhÊt, viÖc biÓudiÔn chØ th«ng qua b»ng c¸ch cho gi¸ trÞ W = 0 víi x1, y1 lμ nh÷ng sè h÷u h¹n bÊtkú. Tuy nhiªn chóng ta kh«ng ®i s©u vμo ®iÓm nμy, b¹n ®äc cã thÓ tham kh¶oc¸c tμi liÖu vÒ ®å ho¹ m¸y tÝnh vμ c¸c bμi to¸n chiÕu phèi c¶nh, ë ®©y chóng ta chØnãi vÒ ph−¬ng ph¸p t¹o ra c¸c phÐp biÕn ®æi trong kh«ng gian ®å ho¹. Víi H×nh 4.3 c¸c ®iÓm t¹o nªn h×nh vu«ng ®−îc cho c¸c gi¸ trÞ nh− sau: −0.5 −0.5 0.5 0.5 P1 = 0 , P2 = 1 , P3 = 1 , P4 = 1 1 1 1 1 Nh− chóng ta ®· biÕt gi¸ trÞ to¹ ®é thø ba - W ®−îc cho b»ng 1, ë ®©ychóng ta ®· sö dông ®Õn kü thuËt phæ biÕn trong c¸c bμi to¸n ®å ho¹ vμ víi Matlabchóng ta dÔ dμng thÓ hiÖn b»ng c¸c c©u lÖnh sau: >> P1 = [-0.5; 0; 1]; P2 = [-0.5; 1; 1]; >> P3 = [0.5; 1; 1]; P4 = [0.5; 0; 1];(Chó ý r»ng ma trËn P chøa 2 vector P1 dïng cho viÖc ®ãng h×nh vu«ng) ViÖc t¹o ta h×nh vu«ng trªn mμn ®å ho¹ th«ng qua biÕn square >> square = [ P1 P2 P3 P4 P1 ] ; >> plot ( square( 1,: ), square( 2,: ) ) >> axis([-4 4 -1 5]); >> title (h×nh vu«ng víi tØ lÖ trôc [ -4 4 -1 5 ]);PhÇn 1 - C¬ së 56Ch−¬ng 4 - §å ho¹ hai chiÒu hinh vuong voi ti le truc [ -4 4 -1 5 ] 1 5 4 0.8 3 0.6 2 0.4 1 0.2 0 0 -1 -0.5 0 0.5 -4 -2 0 2 4 H×nh 4.3 a. H×nh vu«ng chuÈn b. H×nh vu«ng sau khi thay ®æi tØ lÖ trôc to¹ ®éviÖc t¹o ta h×nh vu«ng trªn mμn ®å ho¹ th«ng qua biÕn square >> square = [ P1 P2 P3 P4 P1 ] ; >> plot ( square( 1,: ), square( 2,: ) ) >> axis([-4 4 -1 5]); >> title (h×nh vu«ng víi tØ lÖ trôc [ -4 4 -1 5 ])4.2.2 PhÐp chuyÓn dÞch Hμm biÕn ®æi chuyÓn vÞ víi c¸c kho¶ng dx vμ dy song song trªn 2 trôc x vμy. function T = Translate ( dx , dy ) T = [1 0 dx; 0 1 dy; 0 0 1]; % ma trËn dÞch chuyÓn trong hÖ to¹ ®é ®ång nhÊt 0 0 dx = %T 0 1 dy 0 0 1 ViÖc dÞch chuyÓn h×nh vu«ng 1 kho¶ng ®¬n vÞ theo x vμ 2 kho¶ng ®¬n vÞtheo y ®uîc thÓ hiÖn b»ng c¸c dßng lÖnh: >> P = translate ( 1 , 2) * square >> plot ( P( 1 , : ), P ( 2 , : ) ); >> axis ( [-3 3 -1 3] ) >> title ( H×nh vu«ng thay ®æi vÞ trÝ theo dx vμ dy )PhÇn 1 - C¬ së 57Ch−¬ng 4 - §å ho¹ hai chiÒu hinh vuong dich theo dx= 1, dy= 2 5 4 3 2 1 0 -1 -4 -2 0 2 4 H×nh 4.4 H×nh vu«ng dÞch chuyÓn theo ®é dμi dx vμ dy4.2.3. PhÐp quay Hμm quay quanh gèc to¹ ®é víi mét gãc φ bÊt kú ng−îc chiÒu kim ®ång hå®−îc viÕt. Function R = rotate (fi) c o s φ − s in φ 0 %R = s i n φ cosφ 0 0 0 1 R= [cos(fi) -sin(fi) 0 sin(fi) cos(fi) 0 0 0 1] H×nh vu«ng quay theo goc 45 4 3 2 1 H×nh 4.5 H×nh vu«ng quay 1 gãc 45 theo gèc to¹ ®éPhÇn 1 - C¬ së 58Ch−¬ng 4 - §å ho¹ hai chiÒu H×nh 4.5 thu ®−îc th«ng qua dßng lÖnh d−íi Matlab nh− sau, víi gãc quayθ = 450. >> P = rotate (45*pi/180)*square >> plot (P( 1 , : ), P ( 2 , : ) ), axis ([-3 3 -1 3]) >> title (H×nh vu«ng quay theo goc 45 ) Quay theo goc 60 dich chuyen tren doan dx=1, dy=2 5 4 3 2 1 0 -1 -4 ...
Nội dung trích xuất từ tài liệu:
Giao trinh matlab v5.2 P7Ch−¬ng 4 - §å ho¹ hai chiÒu ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ H×nh 4.2 Quay thùc thÓ quanh trôc x3 Trong hÖ to¹ ®é kh«ng gian th−êng (x, y) ®Ó biÓu diÔn ®iÎm ë v« cïng ÝtnhÊt trong hai gi¸ trÞ cña ®iÓm = α. Nh−ng trong hÖ to¹ ®é thuÇn nhÊt, viÖc biÓudiÔn chØ th«ng qua b»ng c¸ch cho gi¸ trÞ W = 0 víi x1, y1 lμ nh÷ng sè h÷u h¹n bÊtkú. Tuy nhiªn chóng ta kh«ng ®i s©u vμo ®iÓm nμy, b¹n ®äc cã thÓ tham kh¶oc¸c tμi liÖu vÒ ®å ho¹ m¸y tÝnh vμ c¸c bμi to¸n chiÕu phèi c¶nh, ë ®©y chóng ta chØnãi vÒ ph−¬ng ph¸p t¹o ra c¸c phÐp biÕn ®æi trong kh«ng gian ®å ho¹. Víi H×nh 4.3 c¸c ®iÓm t¹o nªn h×nh vu«ng ®−îc cho c¸c gi¸ trÞ nh− sau: −0.5 −0.5 0.5 0.5 P1 = 0 , P2 = 1 , P3 = 1 , P4 = 1 1 1 1 1 Nh− chóng ta ®· biÕt gi¸ trÞ to¹ ®é thø ba - W ®−îc cho b»ng 1, ë ®©ychóng ta ®· sö dông ®Õn kü thuËt phæ biÕn trong c¸c bμi to¸n ®å ho¹ vμ víi Matlabchóng ta dÔ dμng thÓ hiÖn b»ng c¸c c©u lÖnh sau: >> P1 = [-0.5; 0; 1]; P2 = [-0.5; 1; 1]; >> P3 = [0.5; 1; 1]; P4 = [0.5; 0; 1];(Chó ý r»ng ma trËn P chøa 2 vector P1 dïng cho viÖc ®ãng h×nh vu«ng) ViÖc t¹o ta h×nh vu«ng trªn mμn ®å ho¹ th«ng qua biÕn square >> square = [ P1 P2 P3 P4 P1 ] ; >> plot ( square( 1,: ), square( 2,: ) ) >> axis([-4 4 -1 5]); >> title (h×nh vu«ng víi tØ lÖ trôc [ -4 4 -1 5 ]);PhÇn 1 - C¬ së 56Ch−¬ng 4 - §å ho¹ hai chiÒu hinh vuong voi ti le truc [ -4 4 -1 5 ] 1 5 4 0.8 3 0.6 2 0.4 1 0.2 0 0 -1 -0.5 0 0.5 -4 -2 0 2 4 H×nh 4.3 a. H×nh vu«ng chuÈn b. H×nh vu«ng sau khi thay ®æi tØ lÖ trôc to¹ ®éviÖc t¹o ta h×nh vu«ng trªn mμn ®å ho¹ th«ng qua biÕn square >> square = [ P1 P2 P3 P4 P1 ] ; >> plot ( square( 1,: ), square( 2,: ) ) >> axis([-4 4 -1 5]); >> title (h×nh vu«ng víi tØ lÖ trôc [ -4 4 -1 5 ])4.2.2 PhÐp chuyÓn dÞch Hμm biÕn ®æi chuyÓn vÞ víi c¸c kho¶ng dx vμ dy song song trªn 2 trôc x vμy. function T = Translate ( dx , dy ) T = [1 0 dx; 0 1 dy; 0 0 1]; % ma trËn dÞch chuyÓn trong hÖ to¹ ®é ®ång nhÊt 0 0 dx = %T 0 1 dy 0 0 1 ViÖc dÞch chuyÓn h×nh vu«ng 1 kho¶ng ®¬n vÞ theo x vμ 2 kho¶ng ®¬n vÞtheo y ®uîc thÓ hiÖn b»ng c¸c dßng lÖnh: >> P = translate ( 1 , 2) * square >> plot ( P( 1 , : ), P ( 2 , : ) ); >> axis ( [-3 3 -1 3] ) >> title ( H×nh vu«ng thay ®æi vÞ trÝ theo dx vμ dy )PhÇn 1 - C¬ së 57Ch−¬ng 4 - §å ho¹ hai chiÒu hinh vuong dich theo dx= 1, dy= 2 5 4 3 2 1 0 -1 -4 -2 0 2 4 H×nh 4.4 H×nh vu«ng dÞch chuyÓn theo ®é dμi dx vμ dy4.2.3. PhÐp quay Hμm quay quanh gèc to¹ ®é víi mét gãc φ bÊt kú ng−îc chiÒu kim ®ång hå®−îc viÕt. Function R = rotate (fi) c o s φ − s in φ 0 %R = s i n φ cosφ 0 0 0 1 R= [cos(fi) -sin(fi) 0 sin(fi) cos(fi) 0 0 0 1] H×nh vu«ng quay theo goc 45 4 3 2 1 H×nh 4.5 H×nh vu«ng quay 1 gãc 45 theo gèc to¹ ®éPhÇn 1 - C¬ së 58Ch−¬ng 4 - §å ho¹ hai chiÒu H×nh 4.5 thu ®−îc th«ng qua dßng lÖnh d−íi Matlab nh− sau, víi gãc quayθ = 450. >> P = rotate (45*pi/180)*square >> plot (P( 1 , : ), P ( 2 , : ) ), axis ([-3 3 -1 3]) >> title (H×nh vu«ng quay theo goc 45 ) Quay theo goc 60 dich chuyen tren doan dx=1, dy=2 5 4 3 2 1 0 -1 -4 ...
Tìm kiếm theo từ khóa liên quan:
Giáo trình lập trình hệ thống lập trình matlab ngôn ngữ lập trình tin học ứng dụng lập trình ứng dụng các lệnh cơ bản trong lập trìnhGợi ý tài liệu liên quan:
-
Giáo trình Lập trình hướng đối tượng: Phần 2
154 trang 276 0 0 -
Kỹ thuật lập trình trên Visual Basic 2005
148 trang 266 0 0 -
Bài thuyết trình Ngôn ngữ lập trình: Hệ điều hành Window Mobile
30 trang 266 0 0 -
Tài liệu bồi dưỡng giáo viên sử dụng SGK Tin học 10 Cánh diều (Định hướng Tin học ứng dụng)
61 trang 244 0 0 -
Giáo trình Lập trình cơ bản với C++: Phần 1
77 trang 232 0 0 -
Bài giảng Một số hướng nghiên cứu và ứng dụng - Lê Thanh Hương
13 trang 226 0 0 -
Giáo án Tin học lớp 11 (Trọn bộ cả năm)
125 trang 218 1 0 -
NGÂN HÀNG CÂU HỎI TRẮC NGHIỆM THIẾT KẾ WEB
8 trang 208 0 0 -
101 trang 200 1 0
-
Bài tập lập trình Windows dùng C# - Bài thực hành
13 trang 186 0 0