Danh mục

Giáo trình Xác suất thống kê: Phần 2 - ĐH Sư phạm kỹ thuật Nam Định

Số trang: 96      Loại file: pdf      Dung lượng: 1.85 MB      Lượt xem: 14      Lượt tải: 0    
Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tiếp nội dung phần 1, Giáo trình Xác suất thống kê: Phần 2 cung cấp cho người học những kiến thức như: Khái niệm ước lượng điểm, ước lượng khoảng; khái niệm cơ bản về kiểm định giả thuyết, kiểm định về kỳ vọng; kiểm định về tỷ lệ; kiểm định về sự bằng nhau của hai kỳ vọng;...
Nội dung trích xuất từ tài liệu:
Giáo trình Xác suất thống kê: Phần 2 - ĐH Sư phạm kỹ thuật Nam Định 98 Giáo trình Xác suất thống kê Chƣơng 3: LÝ THUYẾT ƢỚC LƢỢNG 3.1. LÝ THUYẾT MẪU 3.1.1. Khái niệm về mẫu ngẫu nhiên, thống kê mô tả Trong thực tế, ngƣời ta thƣờng phải nghiên cứu một tập hợp các phần tử đồng nhất theo một hay nhiều dấu hiệu định tính hoặc định lƣợng đặc trƣng cho các phần tử đó. Chẳng hạn, một doanh nghiệp phải nghiên cứu tập hợp các khách hàng của nó thì dấu hiệu định tính có thể là mức độ hài lòng của khách hàng đối với sản phẩm hoặc dịch vụ của doanh nghiệp, còn dấu hiệu định lƣợng là nhu cầu của khách hàng về số lƣợng sản phẩm của doanh nghiệp. Để nghiên cứu tập hợp các phần tử này theo một dấu hiệu nhất định đôi khi ngƣời ta sử dụng phƣơng pháp nghiên cứu toàn bộ, tức là thống kê toàn bộ tập hợp đó và phân tích từng phần tử của nó theo dấu hiệu nghiên cứu. Chẳng hạn để nghiên cứu dân số của một nƣớc theo các dấu hiệu nhƣ tuổi tác, trình độ văn hoá địa bàn cƣ trú, cơ cấu nghề nghiệp . . . có thể tiến hành tổng điều tra dân số và phân tích từng ngƣời theo các dấu hiệu trên, từ đó tổng hợp thành dấu hiệu chung cho toàn bộ dân số của nƣớc đó. Tuy nhiên trong thực tế phƣơng pháp này gặp phải những khó khăn chủ yếu sau: - Nếu quy mô của tập hợp quá lớn thì việc nghiên cứu toàn bộ sẽ đòi hỏi nhiều chi phí vật chất và thời gian. - Nhiều khi cũng do quy mô của tập hợp quá lớn nên có thể xảy ra trƣờng hợp tính trùng hoặc bỏ sót các phần tử của nó. - Do quy mô nghiên cứu lớn mà trình độ tổ chức nghiên cứu lại hạn chế dẫn đến các sai sót trong quá trình thu thập thông tin ban đầu, hạn chế độ chính xác của kết quả phân tích. - Trong nhiều trƣờng hợp không thể nắm đƣợc toàn bộ các phần tử của tập hợp cần nghiên cứu, do đó không thể tiến hành nghiên cứu toàn bộ đƣợc. . . . . . . . . Vì thế trong thực tế phƣơng pháp nghiên cứu toàn bộ thƣờng chỉ đƣợc áp dụng đối với các tập hợp có quy mô nhỏ, còn chủ yếu ngƣời ta áp dụng phƣơng pháp nghiên cứu không toàn bộ, đặc biệt là phƣơng pháp nghiên cứu chọn mẫu. Phƣơng pháp này chủ trƣơng từ tập hợp cần nghiên cứu chọn ra một số phần tử (gọi là mẫu), phân tích các phần tử này và dựa vào đó mà suy ra các kết luận về tập hợp cần nghiên cứu. Giả Trƣờng ĐHSPKT Nam Định 99 sử theo một phƣơng pháp nào đó từ tổng thể lấy ra n phần tử tạo nên mẫu kích thước n. Nếu mẫu đƣợc chọn ra một cách ngẫu nhiên và xử lý bằng các phƣơng pháp xác suất thì vừa thu đƣợc các kết luận một cách nhanh chóng, đỡ tốn kém mà vẫn đảm bảo độ chính xác cần thiết. Việc thu thập, sắp xếp và trình bày các số liệu của tổng thể hoặc một mẫu gọi là thống kê mô tả. Còn việc sử dụng thông tin của mẫu để tiến hành các suy đoán, kết luận về tổng thể gọi là thống kê suy diễn. Giả sử mẫu kích thƣớc N từ tổng thể nghiên cứu có dấu hiệu là biến ngẫu nhiên X, đƣợc lập theo phƣơng pháp chọn mẫu ngẫu nhiên đơn giản. Với cách chọn mẫu này, mỗi lần chọn một phần tử của mẫu nhƣ làm một phép thử độc lập rút ngẫu nhiên một giá trị của X từ tập các giá trị của nó. Rút ngẫu nhiên đƣợc hiểu là rút phù hợp với luật phân phối xác suất của X nghĩa là xác suất để giá trị đƣợc rút đó thuộc bộ phận nào đó, bằng xác suất của X thuộc bộ phận đó. Vì vậy ta có thể coi thành phần thứ i trong mẫu là biến ngẫu nhiên Xi có cùng luật phân phối của X. Định nghĩa: Mẫu ngẫu nhiên kích thước n là tập hợp của n biến ngẫu nhiên độc lập X1 , X2 , . . . , Xn được thành lập từ biến ngẫu nhiên gốc X trong tổng thể nghiên cứu và có cùng phân phối xác suất với X. Mẫu ngẫu nhiên thƣờng đƣợc ký hiệu là: W = (X1 , X2 , . . . , Xn) Giả sử một giá trị của nó là: X1 = x1 , X2 = x2 , . . . , Xn = xn. Tập hợp n giá trị x1, x2, . . . , xn tạo thành một giá trị của mẫu ngẫu nhiên, hay còn gọi là một mẫu cụ thể, ký hiệu: w = (x1 , x2 , . . . , xn) Nhƣ vậy, mẫu ngẫu nhiên là tập hợp của n biến ngẫu nhiên, còn mẫu cụ thể là tập hợp của n giá trị cụ thể quan sát đƣợc khi thực hiện một phép thử đối với mẫu ngẫu nhiên. Ví dụ 1: Khi nghiên cứu chiều cao của một cộng đồng ngƣời, gọi X là ĐLNN chỉ chiều cao. Chúng ta dự định đo chiều cao của 100 ngƣời đƣợc chọn ngẫu nhiên. Trƣớc khi chƣa tiến hành chọn mẫu, ta chƣa biết đƣợc ngƣời thứ nhất đƣợc chọn vào mẫu có chiều cao là bao nhiêu, nó đóng vai trò là một ĐLNN, ký hiệu X1, có cùng phân phối xác suất với X. Tƣơng tự, ta có chiều cao của ngƣời thứ 100 là X100. Khi đó bộ (X1, 100 Giáo trình Xác suất thống kê X2, ..., X100) là một mẫu tổng quát có kích thƣớc 100. Sau khi đo đạc ta sẽ xác định đƣợc các giá trị của Xi là xi, khi đó bộ số thực (x1, x2, ..., x100) là một mẫu ...

Tài liệu được xem nhiều: