Giáo trình xử lý tín hiệu và lọc số 9
Số trang: 5
Loại file: pdf
Dung lượng: 424.13 KB
Lượt xem: 23
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các phương pháp ta sử dụng trong xử lý tín hiệu phụ thuộc chặt chẽ vào đặc điểm của tín
hiệu. Có những phương pháp riêng áp dụng cho một số loại tín hiệu nào đó. Do vậy, trước
tiên ta cần xem qua cách phân loại tín hiệu liên quan đến những ứng dụng cụ thể.
Nội dung trích xuất từ tài liệu:
Giáo trình xử lý tín hiệu và lọc số 9 Chương II 2.4.3 Thực hiện hệ rời rạc LTI Từ phương trình mô tả quan hệ vào-ra ta thấy để thực hiện hệ LTI, ta cần các khâu nhân, trễ và cộng. Có nhiều cách khác nhau để thực hiện hệ rời rạc, ở đây ta xét cách trực tiếp- là cách thực hiện trực tiếp dựa vào phương trình sai phân mà không qua một phép bíến đổi nào 1. Dạng chuẩn tắc 1 y[n ] + a 1 y[n − 1] + ... + a N y[n − N] = b 0 x[n ] + b1 x[n − 1]] + ... + b M x[n − M ] ⇔ y[n ] = b 0 x[n ] + b1x[n − 1]] + ... + b M x[n − M ] + (−a 1 ) y[n − 1] + ... + (−a N ) y[n − N] 2. Dạng chuẩn tắc 2 Để ý thấy ở dạng chuẩn tắc 1, hệ thống gồm 2 hệ mắc nối tiếp. Theo tính chất giao hoán của tổng chập thì thứ tự các hệ con mắc nối tiếp có thể thay đổi được. Do vậy, ta có thể thay đổi hệ ở dạng 1 thành: - 49 - Chương III 3 Chương PHÂN TÍCH HỆ RỜI RẠC LTI DÙNG PHÉP BIẾN ĐỔI Z Phép biến đổi Z là một công cụ quan trọng trong việc phân tích hệ rời rạc LTI. Trong chương này ta sẽ tìm hiểu về phép biến đổi Z, các tính chất và ứng dụng của nó vào việc phân tích hệ rời rạc LTI. Nội dung chính chương này là: - Phép biến đổi Z - Phép biến đổi Z ngược - Các tính chất của phép biến đổi Z - Phân tích hệ rời rạc LTI dựa vào hàm truyền đạt - Ưng dụng biến đổi Z để giải phương trình sai phân 2.1 PHÉP BIẾN ĐỔI Z (Z-Transform) Phép biến đổi Z là bản sao rời rạc hóa của phép biến đổi Laplace. ∞ Laplace transform : F ( s ) = ∫ f (t )e − st dt −∞ ∞ ∑ f [ n] z − n z -transform : F ( z ) = n =−∞ Thật vậy, xét tín hiệu liên tục f (t ) và lấy mẫu nó, ta được: ∞ ∞ f s (t ) = f (t ) ∑ δ (t − nT ) = ∑ f (nT )δ (t − nT ) n =−∞ n =−∞ Biến đổi Laplace của tín hiệu lấy mẫu (còn gọi là rời rạc) là: ∞⎡ ∞ ⎤ ∞ ∞ L[ f s (t )] = ∫ ⎢ ∑ f (nT )δ (t − nT ) ⎥ e − st dt = ∑ ∫ f (nT )δ (t − nT )e− st dt ⎣ n =−∞ ⎦ −∞ −∞ n =−∞ ∞ ∞ ∞ ∑ f (nT ) ∫ ∑ δ (t − nT )e− st dt = f (nT )e− snT = −∞ n =−∞ n =−∞ Cho f [n] = f (nT ) và z = e , ta có: sT ∞ ∑ f [ n] z − n F ( z) = n =−∞ ∞ F ( z )|z =esT = ∑ f [n]e− sTn n =−∞ ∞ = ∑ f (nT )e− snT n =−∞ = L[ f s (t )] Như vậy, biến đổi Z với z = e sT chính là biến đổi Laplace của tín hiệu rời rạc. 3.1.1 Định nghĩa phép biến đổi Z - 50 - Chương III Như vừa trình bày trên, phép biến đổi Z hai phía (bilateral Z-Transform) của h[n] là: ∞ H ( z ) = Z [ h[n]] = ∑ h[n]z −n n =−∞ Ta cũng có định nghĩa phép biến đổi Z một phía (unilateral Z-transform ) là: ∞ H ( z ) = ∑ h[n]z − n . n=0 Phép biến đổi Z hai phía được dùng cho tất cả tín hiệu, cả nhân quả và không nhân quả. Theo định nghĩa trên ta thấy: X(z) là một chuỗi luỹ thừa vô hạn nên chỉ tồn tại đối với các giá trị z mà tại đó X(z) hội tụ. Tập các biến z mà tại đó X(z) hội tụ gọi là miền hội tụ của X(z)- ký hiệu là ROC (Region of Convergence ). Ta sẽ thấy có thể có những tín hiệu khác nhau nhưng có biến đổi Z trùng nhau. Điểm khác biệt ở đây chính là miền hội tụ. Ta cần lưu ý đến hai khái niệm liên quan đến biến đổi Z- đó là điểm không (zero) và điểm cực (pole). Điểm không là điểm mà tại đó X(z) = 0 và điểm cực là điểm mà tại đó X(z) = ∞ . Do ROC là tập các z mà ở đó X(z) tồn tại nên ROC không bao giờ chứa điểm cực. Ví dụ: Tìm biến đổi Z, vẽ ROC và biểu diễn điểm cực-không: x1[n] = a nu[n] and x2 [n] = −(a n )u[− n − 1] Ta thấy hai tín hiệu khác nhau trên có biến đổi Z trùng nhau nhưng ROC khác nhau. ...
Nội dung trích xuất từ tài liệu:
Giáo trình xử lý tín hiệu và lọc số 9 Chương II 2.4.3 Thực hiện hệ rời rạc LTI Từ phương trình mô tả quan hệ vào-ra ta thấy để thực hiện hệ LTI, ta cần các khâu nhân, trễ và cộng. Có nhiều cách khác nhau để thực hiện hệ rời rạc, ở đây ta xét cách trực tiếp- là cách thực hiện trực tiếp dựa vào phương trình sai phân mà không qua một phép bíến đổi nào 1. Dạng chuẩn tắc 1 y[n ] + a 1 y[n − 1] + ... + a N y[n − N] = b 0 x[n ] + b1 x[n − 1]] + ... + b M x[n − M ] ⇔ y[n ] = b 0 x[n ] + b1x[n − 1]] + ... + b M x[n − M ] + (−a 1 ) y[n − 1] + ... + (−a N ) y[n − N] 2. Dạng chuẩn tắc 2 Để ý thấy ở dạng chuẩn tắc 1, hệ thống gồm 2 hệ mắc nối tiếp. Theo tính chất giao hoán của tổng chập thì thứ tự các hệ con mắc nối tiếp có thể thay đổi được. Do vậy, ta có thể thay đổi hệ ở dạng 1 thành: - 49 - Chương III 3 Chương PHÂN TÍCH HỆ RỜI RẠC LTI DÙNG PHÉP BIẾN ĐỔI Z Phép biến đổi Z là một công cụ quan trọng trong việc phân tích hệ rời rạc LTI. Trong chương này ta sẽ tìm hiểu về phép biến đổi Z, các tính chất và ứng dụng của nó vào việc phân tích hệ rời rạc LTI. Nội dung chính chương này là: - Phép biến đổi Z - Phép biến đổi Z ngược - Các tính chất của phép biến đổi Z - Phân tích hệ rời rạc LTI dựa vào hàm truyền đạt - Ưng dụng biến đổi Z để giải phương trình sai phân 2.1 PHÉP BIẾN ĐỔI Z (Z-Transform) Phép biến đổi Z là bản sao rời rạc hóa của phép biến đổi Laplace. ∞ Laplace transform : F ( s ) = ∫ f (t )e − st dt −∞ ∞ ∑ f [ n] z − n z -transform : F ( z ) = n =−∞ Thật vậy, xét tín hiệu liên tục f (t ) và lấy mẫu nó, ta được: ∞ ∞ f s (t ) = f (t ) ∑ δ (t − nT ) = ∑ f (nT )δ (t − nT ) n =−∞ n =−∞ Biến đổi Laplace của tín hiệu lấy mẫu (còn gọi là rời rạc) là: ∞⎡ ∞ ⎤ ∞ ∞ L[ f s (t )] = ∫ ⎢ ∑ f (nT )δ (t − nT ) ⎥ e − st dt = ∑ ∫ f (nT )δ (t − nT )e− st dt ⎣ n =−∞ ⎦ −∞ −∞ n =−∞ ∞ ∞ ∞ ∑ f (nT ) ∫ ∑ δ (t − nT )e− st dt = f (nT )e− snT = −∞ n =−∞ n =−∞ Cho f [n] = f (nT ) và z = e , ta có: sT ∞ ∑ f [ n] z − n F ( z) = n =−∞ ∞ F ( z )|z =esT = ∑ f [n]e− sTn n =−∞ ∞ = ∑ f (nT )e− snT n =−∞ = L[ f s (t )] Như vậy, biến đổi Z với z = e sT chính là biến đổi Laplace của tín hiệu rời rạc. 3.1.1 Định nghĩa phép biến đổi Z - 50 - Chương III Như vừa trình bày trên, phép biến đổi Z hai phía (bilateral Z-Transform) của h[n] là: ∞ H ( z ) = Z [ h[n]] = ∑ h[n]z −n n =−∞ Ta cũng có định nghĩa phép biến đổi Z một phía (unilateral Z-transform ) là: ∞ H ( z ) = ∑ h[n]z − n . n=0 Phép biến đổi Z hai phía được dùng cho tất cả tín hiệu, cả nhân quả và không nhân quả. Theo định nghĩa trên ta thấy: X(z) là một chuỗi luỹ thừa vô hạn nên chỉ tồn tại đối với các giá trị z mà tại đó X(z) hội tụ. Tập các biến z mà tại đó X(z) hội tụ gọi là miền hội tụ của X(z)- ký hiệu là ROC (Region of Convergence ). Ta sẽ thấy có thể có những tín hiệu khác nhau nhưng có biến đổi Z trùng nhau. Điểm khác biệt ở đây chính là miền hội tụ. Ta cần lưu ý đến hai khái niệm liên quan đến biến đổi Z- đó là điểm không (zero) và điểm cực (pole). Điểm không là điểm mà tại đó X(z) = 0 và điểm cực là điểm mà tại đó X(z) = ∞ . Do ROC là tập các z mà ở đó X(z) tồn tại nên ROC không bao giờ chứa điểm cực. Ví dụ: Tìm biến đổi Z, vẽ ROC và biểu diễn điểm cực-không: x1[n] = a nu[n] and x2 [n] = −(a n )u[− n − 1] Ta thấy hai tín hiệu khác nhau trên có biến đổi Z trùng nhau nhưng ROC khác nhau. ...
Tìm kiếm theo từ khóa liên quan:
Công nghệ viễn thông xử lý tín hiệu hệ thống viễn thông giáo trình mạng viễn thông Thiết bị truyền dẫn mạng lưới truyền thông xây dựng mạng viễn thôngGợi ý tài liệu liên quan:
-
Đồ án tốt nghiệp Công nghệ viễn thông: Tìm hiểu về điện thoại thông minh
86 trang 231 0 0 -
Bài giảng Tín hiệu và hệ thống - Hoàng Minh Sơn
57 trang 58 0 0 -
Đồ án tốt nghiệp: Công nghệ 3G và ứng dụng
74 trang 54 0 0 -
Giáo trình Khai thác thiết bị vô tuyến điện hàng hải trên tàu cá
139 trang 54 0 0 -
Giáo trình Hệ thống viễn thông: Phần 2
165 trang 50 0 0 -
Giáo trình Hệ thống viễn thông: Phần 1
112 trang 44 1 0 -
LUẬN VĂN: NGHIÊN CỨU LƯỢC ĐỒ CHIA SẺ BÍ MẬT VÀ ỨNG DỤNG CỦA CHÚNG VÀO VIỆC THI TUYỂN SINH ĐẠI HỌC
80 trang 42 0 0 -
Lý thuyết hệ thống viễn thông: Phần 1 - Vũ Đình Thành
87 trang 41 0 0 -
27 trang 40 0 0
-
5 trang 40 1 0