Học toán bằng phầm mềm
Số trang: 9
Loại file: pdf
Dung lượng: 504.52 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
GV: Lê quang Hùng Trường THPT Đặng Trần Côn Các khái niệm toán học tuy có mức độ tư duy cao, nhưng đều là sự khái quát của những sự vật, hiện tượng tồn tại trong thực tế nên việc sử dụng phương tiện trực quan để minh họa, củng cố các khái niệm có liên quan đến thực tế trong dạy học toán là một yêu cầu không thể thiếu đối với giáo viên toán chúng ta. Trong các năm gần đây, việc sử dụng công nghệ thông tin (CNTT) trong dạy học toán tương đối phổ biến, hầu...
Nội dung trích xuất từ tài liệu:
Học toán bằng phầm mềm THIẾT KẾ CÁC MÔ HÌNH TRỰC QUAN ĐỘNG HỖ TRỢ VIỆC DẠY, HỌC TOÁN BẰNG PHẦN MỀM THE GEOMETER’S SKETCHPAD (GSP). GV: Lê quang Hùng Trường THPT Đặng Trần Côn Các khái niệm toán học tuy có mức độ tư duy cao, nhưng đều là sự khái quát của những sự vật, hiện tượng tồn tại trong thực tế nên việc sử dụng phương tiện trực quan để minh họa, củng cố các khái niệm có liên quan đến thực tế trong dạy học toán là một yêu cầu không thể thiếu đối với giáo viên toán chúng ta. Trong các năm gần đây, việc sử dụng công nghệ thông tin (CNTT) trong dạy học toán tương đối phổ biến, hầu hết các giáo viên toán đều được giới thiệu và sử dụng khá thành thạo các phần mềm hỗ trợ cho việc giảng dạy toán bậc THPT như The Geometer’s Sketchpad, Géospacw, Cabri …. Qua tìm hiểu, chúng tôi nhận thấy các phần mềm này nếu được sử dụng hợp lý thì đây là một phương tiện trực quan tốt, vì nó không chỉ giúp học sinh thấy được các khái niệm toán học một cách tự giác - không cần phải mô tả nhiều - mà còn giúp cho học sinh có thể chủ động đặt ra hoặc đoán nhận các bài toán sau khi quan sát, tìm tòi (dưới sự hướng dẫn, gợi ý của giáo viên). Có thể thấy hai khả năng nổi bật của các phần mềm trên là: 1. Khả năng xây dựng các mô hình trực quan động: Với các phần mềm trên việc thiết kế các mô hình toán “động” trong phẳng, và đặc biệt trong không gian, là tương đối dễ thực hiện và sử dụng khá thuận tiện, chẳng hạn như: đồ thị hàm số, phương trình, bất phương trình, dãy số, giới hạn, tính liên tục, tích phân trong đại số, giải tích lớp 10,11,12, các hệ thức lượng trong tam giác và trong đường tròn, các phép biến hình trong phẳng, các bài toán liên quan đến quỹ tích, dựng hình, các bài toán về điểm cố định, tiếp xúc,... trong hình học phẳng lớp 10, các khối đa diện, khối nón, khối chóp, mặt cầu, mặt phẳng, và tương giao giữa các mặt, quan hệ song song , vuông góc, phép chiếu song song ,... trong hình học 11, 12. Các phần mềm này có thể trình diễn các mô hình động một cách hấp dẫn, sinh động mà các phương tiện khác khó thực hiện được. Có thể minh họa điều này bằng một số các mô hình được dựng bằng The Geometer’s Sketchpad, chứa trong các tệp tin đính kèm. 1 Hình 1 Hình 2 Hình 3 Hình 4 Hình 5 Hình 6 2 Hình 8 Hình 7 Hình 9 Hình 10 Hình11 2. Khả năng dẫn dắt học sinh chủ động lĩnh hội kiến thức. Đối với toán, giải được bài toán hay giải quyết được vấn đề là quan trọng, nhưng đặt được bài toán, phát hiện, đoán nhận được vấn đề lại quan trọng hơn, vì đây là mầm mống của sự 3 sáng tạo, là động cơ của sự phát triển. Việc đặt ra một bài toán sau khi cho học sinh khảo sát các trường hợp đặc biệt rồi khái quát lên, hoặc từ trường hợp tổng quát đưa về trường hợp riêng, thường dễ được chấp nhận hơn là đột ngột đưa ra bài toán mà học sinh chưa hiểu vì sao, từ đâu có bài toán đó. Các phần mềm toán có thể hỗ trợ giáo viên việc này, để minh họa ta xét các ví dụ sau. uuur uuur r Ví dụ: Gọi M là trung điểm của đoạn AB. Chứng minh MA + MB = 0 . Chúng ta có thể cho học sinh tiếp cận bài toán bằng cách uuur uuu r uuu r - Vẽ vectơ tổng DE = DA + DB với A, B là hai điểm cho trước, D là điểm tùy ý. - Rê chậm điểm D đến các vị trí khác nhau trên mặt phẳng cho học sinh quan sát rồi đặt câu hỏi. uuur H: Vectơ DE qua điểm cố định nào? uuur r H: Điểm D ở vị trí nào thì DE = 0 ? Hình 12 Sau đó giáo viên có thể - Rê điểm D sao cho D trùng với E, cho học sinh quan sát, dự đoán. - Tạo vết cho đoạn DE rồi rê điểm D đến các vị trí khác nhau cho học sinh quan sát, dự đoán. Hình 13 Hình 14 Có thể hướng dẫn học sinh khám phá xa hơn bằng cách đặt vấn đề là với mỗi vị trí của điểm D ta có một vị trí xác định của điểm E, khi điểm D di động điểm E di động theo. 4 Giả sử điểm D di động trên đường tròn (O) (hoặc trên đường thẳng d) cho trước. H: Khi đó điểm E vạch nên hình gì? Hãy xác định hình mà điểm E vạch nên khi điểm D di động trên (O) (hoặc trên đường thẳng d). Trong trường hợp cần thiết có thể tạo vết cho điểm E để học sinh dễ dàng đoán nhận quĩ tích của điểm E. Hình 15 ...
Nội dung trích xuất từ tài liệu:
Học toán bằng phầm mềm THIẾT KẾ CÁC MÔ HÌNH TRỰC QUAN ĐỘNG HỖ TRỢ VIỆC DẠY, HỌC TOÁN BẰNG PHẦN MỀM THE GEOMETER’S SKETCHPAD (GSP). GV: Lê quang Hùng Trường THPT Đặng Trần Côn Các khái niệm toán học tuy có mức độ tư duy cao, nhưng đều là sự khái quát của những sự vật, hiện tượng tồn tại trong thực tế nên việc sử dụng phương tiện trực quan để minh họa, củng cố các khái niệm có liên quan đến thực tế trong dạy học toán là một yêu cầu không thể thiếu đối với giáo viên toán chúng ta. Trong các năm gần đây, việc sử dụng công nghệ thông tin (CNTT) trong dạy học toán tương đối phổ biến, hầu hết các giáo viên toán đều được giới thiệu và sử dụng khá thành thạo các phần mềm hỗ trợ cho việc giảng dạy toán bậc THPT như The Geometer’s Sketchpad, Géospacw, Cabri …. Qua tìm hiểu, chúng tôi nhận thấy các phần mềm này nếu được sử dụng hợp lý thì đây là một phương tiện trực quan tốt, vì nó không chỉ giúp học sinh thấy được các khái niệm toán học một cách tự giác - không cần phải mô tả nhiều - mà còn giúp cho học sinh có thể chủ động đặt ra hoặc đoán nhận các bài toán sau khi quan sát, tìm tòi (dưới sự hướng dẫn, gợi ý của giáo viên). Có thể thấy hai khả năng nổi bật của các phần mềm trên là: 1. Khả năng xây dựng các mô hình trực quan động: Với các phần mềm trên việc thiết kế các mô hình toán “động” trong phẳng, và đặc biệt trong không gian, là tương đối dễ thực hiện và sử dụng khá thuận tiện, chẳng hạn như: đồ thị hàm số, phương trình, bất phương trình, dãy số, giới hạn, tính liên tục, tích phân trong đại số, giải tích lớp 10,11,12, các hệ thức lượng trong tam giác và trong đường tròn, các phép biến hình trong phẳng, các bài toán liên quan đến quỹ tích, dựng hình, các bài toán về điểm cố định, tiếp xúc,... trong hình học phẳng lớp 10, các khối đa diện, khối nón, khối chóp, mặt cầu, mặt phẳng, và tương giao giữa các mặt, quan hệ song song , vuông góc, phép chiếu song song ,... trong hình học 11, 12. Các phần mềm này có thể trình diễn các mô hình động một cách hấp dẫn, sinh động mà các phương tiện khác khó thực hiện được. Có thể minh họa điều này bằng một số các mô hình được dựng bằng The Geometer’s Sketchpad, chứa trong các tệp tin đính kèm. 1 Hình 1 Hình 2 Hình 3 Hình 4 Hình 5 Hình 6 2 Hình 8 Hình 7 Hình 9 Hình 10 Hình11 2. Khả năng dẫn dắt học sinh chủ động lĩnh hội kiến thức. Đối với toán, giải được bài toán hay giải quyết được vấn đề là quan trọng, nhưng đặt được bài toán, phát hiện, đoán nhận được vấn đề lại quan trọng hơn, vì đây là mầm mống của sự 3 sáng tạo, là động cơ của sự phát triển. Việc đặt ra một bài toán sau khi cho học sinh khảo sát các trường hợp đặc biệt rồi khái quát lên, hoặc từ trường hợp tổng quát đưa về trường hợp riêng, thường dễ được chấp nhận hơn là đột ngột đưa ra bài toán mà học sinh chưa hiểu vì sao, từ đâu có bài toán đó. Các phần mềm toán có thể hỗ trợ giáo viên việc này, để minh họa ta xét các ví dụ sau. uuur uuur r Ví dụ: Gọi M là trung điểm của đoạn AB. Chứng minh MA + MB = 0 . Chúng ta có thể cho học sinh tiếp cận bài toán bằng cách uuur uuu r uuu r - Vẽ vectơ tổng DE = DA + DB với A, B là hai điểm cho trước, D là điểm tùy ý. - Rê chậm điểm D đến các vị trí khác nhau trên mặt phẳng cho học sinh quan sát rồi đặt câu hỏi. uuur H: Vectơ DE qua điểm cố định nào? uuur r H: Điểm D ở vị trí nào thì DE = 0 ? Hình 12 Sau đó giáo viên có thể - Rê điểm D sao cho D trùng với E, cho học sinh quan sát, dự đoán. - Tạo vết cho đoạn DE rồi rê điểm D đến các vị trí khác nhau cho học sinh quan sát, dự đoán. Hình 13 Hình 14 Có thể hướng dẫn học sinh khám phá xa hơn bằng cách đặt vấn đề là với mỗi vị trí của điểm D ta có một vị trí xác định của điểm E, khi điểm D di động điểm E di động theo. 4 Giả sử điểm D di động trên đường tròn (O) (hoặc trên đường thẳng d) cho trước. H: Khi đó điểm E vạch nên hình gì? Hãy xác định hình mà điểm E vạch nên khi điểm D di động trên (O) (hoặc trên đường thẳng d). Trong trường hợp cần thiết có thể tạo vết cho điểm E để học sinh dễ dàng đoán nhận quĩ tích của điểm E. Hình 15 ...
Tìm kiếm theo từ khóa liên quan:
Khoa học tự nhiên toán học gián án môn toán hình học phổ thông Học toán bằng phầm mềmGợi ý tài liệu liên quan:
-
176 trang 276 3 0
-
14 trang 97 0 0
-
Tổng hợp nano ZnO sử dụng làm điện cực âm trong nguồn điện bạc - kẽm
5 trang 45 0 0 -
Cấu tạo từ của hệ thống số đếm trong các ngôn ngữ (những bài toán trong các con số)
13 trang 44 0 0 -
34 trang 35 0 0
-
Báo cáo thực tập chuyên đề Vật liệu Ruby Al2O3 : Cr3+ nhâm tạo
25 trang 35 0 0 -
Làm sao để dịch chuyển núi Phú Sĩ
35 trang 33 0 0 -
11 trang 33 0 0
-
Estimation of Sedimentary Basin Depth Using the Hybrid Technique for Gravity Data
5 trang 32 0 0 -
Văn hóa các dân tộc Việt Nam: Thông tin thư mục
144 trang 32 0 0