Danh mục

Hướng dẫn chấm thi kỳ thi tốt nghiệp THPT năm 2002 môn Toán - Giáo dục THPT

Số trang: 4      Loại file: pdf      Dung lượng: 271.17 KB      Lượt xem: 10      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Cùng tham khảo Hướng dẫn chấm thi kỳ thi tốt nghiệp THPT năm 2002 môn Toán - Giáo dục THPT sau đây. Tài liệu hữu ích cho các giáo viên chấm thi trong kỳ thi này, đồng thời cũng là tài liệu tham khảo giúp các em học sinh biết được cách tính điểm của đề thi trên.
Nội dung trích xuất từ tài liệu:
Hướng dẫn chấm thi kỳ thi tốt nghiệp THPT năm 2002 môn Toán - Giáo dục THPTBỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2012 Môn thi: TOÁN – Giáo dục trung học phổ thông ĐỀ THI CHÍNH THỨC HƯỚNG DẪN CHẤM THI (Bản hướng dẫn này gồm 04 trang) I. Hướng dẫn chung 1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì vẫn cho đủ số điểm từng phần như hướng dẫn quy định. 2) Việc chi tiết hoá (nếu có) thang điểm trong hướng dẫn chấm phải đảm bảo không làm sai lệch hướng dẫn chấm và phải được thống nhất thực hiện trong toàn Hội đồng chấm thi. 3) Sau khi cộng điểm toàn bài, làm tròn đến 0,5 điểm (lẻ 0,25 làm tròn thành 0,5; lẻ 0,75 làm tròn thành 1,00 điểm). II. Đáp án và thang điểm CÂU ĐÁP ÁN ĐIỂM Câu 1 1. (2,0 điểm)(3,0 điểm) Tập xác định: D = . 0,25 Sự biến thiên: ⎡x = 0 • Chiều biến thiên: y′ = x3 − 4 x; y = 0 ⇔ ⎢ ⎣ x = ± 2. 0,50 + Trên các khoảng ( − 2 ; 0 ) và ( 2 ; + ∞ ) , y′ > 0 nên hàm số đồng biến. + Trên các khoảng ( −∞ ; − 2 ) và ( 0 ; 2 ) , y′ < 0 nên hàm số nghịch biến. • Cực trị: + Hàm số đạt cực đại tại x = 0 và yCĐ = 0. 0,25 + Hàm số đạt cực tiểu tại x = ± 2 và yCT = − 4. • Giới hạn: lim y = + ∞ ; lim y = + ∞. 0,25 x→−∞ x→+∞ • Bảng biến thiên: x −∞ −2 0 2 +∞ y’ − 0 + 0 − 0 + 0,25 +∞ +∞ y 0 −4 −4 1 Đồ thị: y −2 2 −2 O 2 2 2 x 0,50 −4 ( ) Lưu ý: Thí sinh chỉ trình bày: Đồ thị cắt Ox tại O và ± 2 2 ;0 hoặc thể hiện (± 2 ) 2 ;0 trên hình vẽ thì vẫn cho đủ 0,50 điểm. 2. (1,0 điểm) Ta có f ′ ( x ) = x3 − 4 x ; f ′′ ( x ) = 3 x 2 − 4. 0,25 f ′′ ( x0 ) = −1 ⇔ 3 x02 − 4 = −1 ⇔ x0 = ± 1. 0,25 7 5 x0 = 1 ⇒ y0 = − ; f (1) = − 3, ta được phương trình tiếp tuyến là y = − 3x + . 0,25 4 4 7 5 x0 = −1 ⇒ y0 = − ; f ( −1) = 3, ta được phương trình tiếp tuyến là y = 3 x + . 0,25 4 4 Câu 2 1. (1,0 điểm)(3,0 điểm) Điều kiện: x > 3. 0,25 Với điều kiện trên, phương trình đã cho tương đương với 0,25 log 2 ( x − 3) + 2 log 4 x = 2 ⇔ log 2 ( x − 3) + log 2 x = 2 ⇔ log 2 ⎡⎣ x ( x − 3) ⎤⎦ = 2 ⇔ x 2 − 3 x − 4 = 0 0,25 ⎡ x = −1 (loại) ⇔⎢ . Vậy nghiệm của phương trình là x = 4. 0,25 ⎣x = 4 2. (1,0 điểm) Đặt t = e x − 1 ⇒ dt = e x dx. 0,25 Đổi cận: x = 0 ⇒ t = 0 ; x = ln 2 ⇒ t = 1. 0,25 1 1 t3 2 Suy ra I = ∫ t dt = . 0,25 0 ...

Tài liệu được xem nhiều: