Thông tin tài liệu:
Tham khảo tài liệu 'junior problems - phần 2', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Junior problems - Phần 2
Junior problems
J175. Let a, b ∈ (0, π ) such that sin2 a + cos 2b ≥ 1 1
sec a and sin2 b + cos 2a ≥ sec b. Prove that
2 2 2
1
cos6 a + cos6 b ≥ .
2
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Prithwijit De, HBCSE, India
We will use the following well-known trigonometric identities
(a) sin2 x = 1 − cos2 x,
(b) cos 2x = 2 cos2 x − 1,
1
(c) sec x = .
cos x
The inequalities can be written as
1
2 cos2 b cos a − cos3 a ≥ (1)
2
and
1
2 cos2 a cos b − cos3 b ≥ . (2)
2
π
The signs of the inequalities are preserved because cos x is positive when x ∈ 0, . Now by
2
squaring both sides of (1) and (2) and adding them we get
1
cos6 a + cos6 b ≥ .
2
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´blica
u
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit` degli studi di Tor
a
Vergata Roma, Italy; Tigran Hakobyan, Armenia.
1
Mathematical Reflections 6 (2010)
J176. Solve in positive real numbers the system of equations
x1 + x2 + · · · + xn = 1
1 1 1 1 3
x1 + x2 + · · · + xn + x1 x2 ···xn = n + 1.
Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau, Romania
Solution by Tigran Hakobyan, Armenia
We have
n2
1 1 1
= n2
+ ··· + ≥
+
x1 + x2 + · · · + xn
x1 x2 xn
and
1 1
= nn .
≥ x1 +x2 +···+xn n
x1 x2 · · · xn n
Thus,
n3 + 1 ≥ nn + n2
which implies that n ≤ 2. If n = 1 we get a contradiction. For n = 2 we get
x1 + x + 2 = 1
1 1 1
x1 + x2 + x1 x2 = 9
2, 1 , 3 , 2, 2 , 1
2
which is (n, x1 , x2 ) ∈ .
3 33
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´blica
u
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit` degli studi di Tor
a
Vergata Roma, Italy; Lorenzo Pascali, Universit` di Roma “La Sapienza”, Roma, Italy.
a
...