Tham khảo tài liệu 'junior problems - phần 4', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Junior problems - Phần 4
Junior problems
J181. Let a, b, c, d be positive real numbers. Prove that
3 3
3 3
a2 + d2 b2 + c2
a+b c+d
≤
+ +
2 2 a+d b+c
Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil
J182. Circles C1 (O1 , r) and C2 (O2 , R) are externally tangent. Tangent lines from O1
to C2 intersect C2 at A and B, while tangent lines from O2 to C1 intersect
C1 at C and D. Let O1 A ∩ O2 C = {E } and O1 B ∩ O2 D = {F }. Prove that
EF ∩ O1 O2 = AD ∩ BC.
Proposed by Roberto Bosch Cabrera, Florida, USA
J183. Let x, y, z be real numbers. Prove that
2
(x2 + y 2 + z 2 )2 + xyz (x + y + z ) ≥ (xy + yz + zx)2 + (x2 y 2 + y 2 z 2 + z 2 x2 ).
3
Proposed by Neculai Stanciu, George Emil Palade, Buzau, Romania
J184. Find all quadruples (x, y, z, w) of integers satisfying the system of equations
x + y + z + w = xy + yz + zx + w2 − w = xyz − w3 = −1.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
2xy
J185. Let H (x, y ) = x+y be the harmonic mean of the positive real numbers x and y .
For n ≥ 2, find the greatest constant C such that for any positive real numbers
a1 , . . . , an , b1 , . . . , bn the following inequality holds
C 1 1
≤ + ··· + .
H (a1 + · · · + an , b1 + · · · + bn ) H (a1 , b1 ) H (an , bn )
Proposed by Dorin Andrica, Babes-Bolyai University, Cluj-Napoca, Romania
J186. Let ABC be a right triangle with AC = 3 and BC = 4 and let the median
AA1 and the angle bisector BB1 intersect at O. A line through O intersects
hypotenuse AB at M and AC at N . Prove that
MB NC 4
· ≤.
MA NA 9
Proposed by Valcho Milchev, Kardzhali, Bulgaria
1
Mathematical Reflections 1 (2011)
Senior problems
S181. Let a and b be positive real numbers such that
1 1
|a − 2b| ≤ √ and |2a − b| ≤ √ .
a b
Prove that a + b ≤ 2.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
S182. Let a, b, c be real numbers such that a > b > c. Prove that for each real number
x the following inequality holds
1
(x − a)4 (b − c) ≥ (a − b)(b − c)(a − c)[(a − b)2 + (b − c)2 + (c − a)2 ].
6
cyc
Proposed by Dorin Andrica, Babes-Bolyai University, Cluj-Napoca, Romania
a2 −1
n
S183. Let a0 ∈ (0, 1) and an = an−1 − n ≥ 1. Prove that for all n,
2,
√
n 1 1 n+1+ n
≤ − < .
2 an a0 2
Proposed by Arkady Alt, San Jose, California, USA
1 1 1
+ · · · + n , n ≥ 2. Prove that
S184. Let Hn = +
2 3
√
n
eHn > n! ≥ 2Hn .
Proposed by Tigran Hakobyan, Vanadzor, Armenia
S185. Let A1 , A2 , A3 be non-collinear points on parabola x2 = 4py, p > 0, and let
B1 = l2 ∩ l3 , B2 = l3 ∩ l1 , B3 = l1 ∩ l2 where l1 , l2 , l3 are tangents to the parabola
[ A1 A2 A3 ]
at points A1 , A2 , A3 , respectively. Prove that ...