Lecture "Fundamentals of control systems - Chapter 9: Design of discrete control systems" presentation of content: Introduction, discrete lead - lag compensator and PID controller, design discrete systems in the Z domain,.... Invite you to reference.
Nội dung trích xuất từ tài liệu:
Lecture Fundamentals of control systems: Chapter 9 - TS. Huỳnh Thái Hoàng Lecture Notes Fundamentals of Control Systems Instructor: Assoc. Prof. Dr. Huynh Thai Hoang Department of Automatic Control Faculty of Electrical & Electronics Engineering Ho Chi Minh City University of Technology Email: hthoang@hcmut.edu.vn huynhthaihoang@yahoo.com Homepage: www4.hcmut.edu.vn/~hthoang/ www4 hcmut edu vn/ hthoang/6 December 2013 © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1 Chapter 9 DESIGN OF DISCRETE CONTROL SYSTEMS6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 2 Content Introduction Discrete lead – lag compensator and PID controller Design discrete systems in the Z domain Controllability and observability of discrete systems Design D i statet t feedback f db k controller t ll using i polel placement Design state estimator6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 3 Discrete lead lag compensators and PID controllers6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 4 Control schemes Serial compensatorR(z) Y(z) + GC(z) ZOH G(z) T H( ) H(z) State feedback control r(k) u(k) x(t) y(k) + x (k 1) Ad x (k ) Bd u (k ) Cd K6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 5 Transfer function of discrete difference term e(k) u(k) D dde(t ) Differential term: u (t ) dt e( kT ) e[( k 1)T ] Discrete difference: u ( kT ) T E ( z ) z 1 E ( z ) U ( z) T Transfer function of the discrete difference term: 1 z 1 GD ( z ) T z 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 6 Transfer function of discrete integral term e(t) u(t) I t Integral l t Continuous integral:u(t ) e( )d 0 kT ( k 1)T kT Di Discrete t integral: i t l u (kT ) e( )d e( )d e( )d 0 0 ( k 1)T kTu ( kT ) = u[( k - 1)T ] + ò e ( t ) d t = u[( k - 1)T ] + T (e[( k - 1)T ] + e(kT ) ( k -1) T 2 U ( z ) z 1U ( z ) 2 T 1 z E( z) E( z) TF of discrete integral term: GI ( z ) T z 1 2 z 1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 7 Transfer function of discrete PID controller C ti Continuous PID controller: t ll K GPID ( s ) K P K D s s Discrete PID controller: KIT z 1 KD z 1 GPID ( z ) K P 2 z 1 T z P I D z KD z 1 or GPID ( z ) K P K I T z 1 T z P ...