Lecture Introduction to Machine learning and Data mining: Lesson 7
Số trang: 26
Loại file: pdf
Dung lượng: 889.61 KB
Lượt xem: 32
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Lecture Introduction to Machine learning and Data mining: Lesson 7. This lesson provides students with content about: evaluation of empirical results; assessing performance; some evaluation techniques; hold-out (random splitting); K-fold cross-validation;... Please refer to the detailed content of the lecture!
Nội dung trích xuất từ tài liệu:
Lecture Introduction to Machine learning and Data mining: Lesson 7
Nội dung trích xuất từ tài liệu:
Lecture Introduction to Machine learning and Data mining: Lesson 7
Tìm kiếm theo từ khóa liên quan:
Lecture Introduction to Machine learning and Data mining Bài giảng Học máy và khai phá dữ liệu Machine learning and data mining Evaluation of empirical results Assessing performance K-fold cross-validationTài liệu liên quan:
-
Lecture Introduction to Machine learning and Data mining: Lesson 9.1
45 trang 38 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 5
33 trang 35 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 2
23 trang 32 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 10
25 trang 31 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 4
23 trang 29 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 8
68 trang 24 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 3
30 trang 24 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 9.2
20 trang 23 0 0 -
Lecture Introduction to Machine learning and Data mining: Lesson 1
30 trang 23 0 0 -
106 trang 20 0 0