Lecture note Data visualization - Chapter 31
Số trang: 25
Loại file: pptx
Dung lượng: 88.61 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In this lecture we learned about: Definition of data visualization, terms related to data visualization, data mining, data recovery, data redundancy, data acquisition, data validation, data integrity, data verification, data aggregation.
Nội dung trích xuất từ tài liệu:
Lecture note Data visualization - Chapter 31Lecture31IntroductiontoDataVisualizationDefinitionofDataVisualizationTermsrelatedtoDataVisualization DataMining DataRecovery DataRedundancy DataAcquisition DataValidation DataIntegrity DataVerificationContinued….Datamining analyticprocessdesignedtoexploredata analyzingdatafromdifferentperspectives summarizingitintousefulinformationDatarecovery handlingthedatathroughthedatafromdamaged,failed, corrupted,orinaccessiblesecondarystoragemedia recoveryrequiredduetophysicaldamagetothestorage deviceorlogicaldamagetothefilesystemContinued….Dataredundancy additionaltotheactualdata permitscorrectionoferrorsDataacquisition processofsamplingsignals measurerealworldphysicalconditions convertingtheresultingsamplesintodigitalnumericvaluesDatavalidation processofensuringthataprogramoperatesonclean,Continued….Dataintegrity maintainingandassuringtheaccuracyandconsistencyof data ensuredataisrecordedexactlyasintendedDataverification differenttypesofdataarecheckedforaccuracyand inconsistenciesafterdatamigrationisdoneDataaggregation informationisgatheredandexpressedinasummaryformContinued….NeedfordatavisualizationImportanceofdatavisualizationLimitationofspreadsheetInterpretationthroughdatavisualization identifyareasthatneedattentionorimprovement understandwhatfactorsinfluencedesignsystem predicthowtochangesystemdesignaccordingly predicttheefficiencyofsystemInteractiveVisualizationContinued….Combinationofdisciplines datavisualizationtoprovideameaningfulsolutionrequires insightsfromdiversefieldslikestatistics,datamining, graphicdesign,andinformationvisualization softwarebasedinformationvisualizationaddsbuilding blocksforinteractingwithandrepresentingvariouskindsof abstractdata Continued….Processofdatavisualization Acquire Parse Filter Mine Represent Refine InteractAcquire Obtainthedata,whetherfromafileonadiskorasource overanetworkParse Providesomestructureforthedata’smeaning,andorderit intocategoriesFilter RemoveallbutthedataofinterestMine Applymethodsfromstatisticsordataminingasawayto discernpatternsorplacethedatainmathematicalcontextRepresent Chooseabasicvisualmodel,suchasabargraph,list,or tree.Refine Improvethebasicrepresentationtomakeitclearerand morevisuallyengaging.Interact Addmethodsformanipulatingthedataorcontrolling whatfeaturesarevisible.Continued….IterationandCombinationofstepsofdatavisualizationUniquerequirementsforeachproject eachdatasetisdifferent thepointofvisualizationistoexposethatfascinatingaspect ofthedataandmakeitselfevident readilyavailablerepresentationtoolkitsareusefulstarting points theymustbecustomizedduringanindepthstudyofthe taskContinued….AvoidusageofexcessdataAudienceofproblemQuantitativemessages TimeSeries Ranking ParttoWhole Deviation FrequencyDistribution CorrelationTimeseries: Asinglevariableiscapturedoveraperiodoftime,suchas theunemploymentrateovera10yearperiod.Alinechart maybeusedtodemonstratethetrendRanking: Categoricalsubdivisionsarerankedinascendingor descendingorder,suchasarankingofsalesperformanceby salespersonsduringasingleperiod Abarchartmaybeusedtoshowthecomparisonacrossthe salespersonsParttowhole: Categoricalsubdivisionsaremeasuredasaratiotothe whole Apiechartorbarchartcanshowthecomparisonofratios, suchasthemarketsharerepresentedbycompetitorsina marketDeviation: Categoricalsubdivisionsarecomparedagainareference, suchasacomparisonofactualvs.budgetexpensesfor severaldepartmentsofabusinessforagiventimeperiod Abarchartcanshowcomparisonoftheactualversusthe referenceamountFrequencydistribution: Showsthenumberofobservationsofaparticularvariable forgiveninterval,suchasthenumberofyearsinwhichthe stockmarketreturnisbetweenintervalssuchas010%,11 20%,etc. Ahistogram,atypeofbarchart,maybeusedforthis analysis Aboxplothelpsvisualizekeystatisticsaboutthe distribution,suchasmean,median,quartiles,etc.Correlation: Comparisonbetweenobservationsrepresentedbytwo variables(X,Y)todetermineiftheytendtomoveinthe same ...
Nội dung trích xuất từ tài liệu:
Lecture note Data visualization - Chapter 31Lecture31IntroductiontoDataVisualizationDefinitionofDataVisualizationTermsrelatedtoDataVisualization DataMining DataRecovery DataRedundancy DataAcquisition DataValidation DataIntegrity DataVerificationContinued….Datamining analyticprocessdesignedtoexploredata analyzingdatafromdifferentperspectives summarizingitintousefulinformationDatarecovery handlingthedatathroughthedatafromdamaged,failed, corrupted,orinaccessiblesecondarystoragemedia recoveryrequiredduetophysicaldamagetothestorage deviceorlogicaldamagetothefilesystemContinued….Dataredundancy additionaltotheactualdata permitscorrectionoferrorsDataacquisition processofsamplingsignals measurerealworldphysicalconditions convertingtheresultingsamplesintodigitalnumericvaluesDatavalidation processofensuringthataprogramoperatesonclean,Continued….Dataintegrity maintainingandassuringtheaccuracyandconsistencyof data ensuredataisrecordedexactlyasintendedDataverification differenttypesofdataarecheckedforaccuracyand inconsistenciesafterdatamigrationisdoneDataaggregation informationisgatheredandexpressedinasummaryformContinued….NeedfordatavisualizationImportanceofdatavisualizationLimitationofspreadsheetInterpretationthroughdatavisualization identifyareasthatneedattentionorimprovement understandwhatfactorsinfluencedesignsystem predicthowtochangesystemdesignaccordingly predicttheefficiencyofsystemInteractiveVisualizationContinued….Combinationofdisciplines datavisualizationtoprovideameaningfulsolutionrequires insightsfromdiversefieldslikestatistics,datamining, graphicdesign,andinformationvisualization softwarebasedinformationvisualizationaddsbuilding blocksforinteractingwithandrepresentingvariouskindsof abstractdata Continued….Processofdatavisualization Acquire Parse Filter Mine Represent Refine InteractAcquire Obtainthedata,whetherfromafileonadiskorasource overanetworkParse Providesomestructureforthedata’smeaning,andorderit intocategoriesFilter RemoveallbutthedataofinterestMine Applymethodsfromstatisticsordataminingasawayto discernpatternsorplacethedatainmathematicalcontextRepresent Chooseabasicvisualmodel,suchasabargraph,list,or tree.Refine Improvethebasicrepresentationtomakeitclearerand morevisuallyengaging.Interact Addmethodsformanipulatingthedataorcontrolling whatfeaturesarevisible.Continued….IterationandCombinationofstepsofdatavisualizationUniquerequirementsforeachproject eachdatasetisdifferent thepointofvisualizationistoexposethatfascinatingaspect ofthedataandmakeitselfevident readilyavailablerepresentationtoolkitsareusefulstarting points theymustbecustomizedduringanindepthstudyofthe taskContinued….AvoidusageofexcessdataAudienceofproblemQuantitativemessages TimeSeries Ranking ParttoWhole Deviation FrequencyDistribution CorrelationTimeseries: Asinglevariableiscapturedoveraperiodoftime,suchas theunemploymentrateovera10yearperiod.Alinechart maybeusedtodemonstratethetrendRanking: Categoricalsubdivisionsarerankedinascendingor descendingorder,suchasarankingofsalesperformanceby salespersonsduringasingleperiod Abarchartmaybeusedtoshowthecomparisonacrossthe salespersonsParttowhole: Categoricalsubdivisionsaremeasuredasaratiotothe whole Apiechartorbarchartcanshowthecomparisonofratios, suchasthemarketsharerepresentedbycompetitorsina marketDeviation: Categoricalsubdivisionsarecomparedagainareference, suchasacomparisonofactualvs.budgetexpensesfor severaldepartmentsofabusinessforagiventimeperiod Abarchartcanshowcomparisonoftheactualversusthe referenceamountFrequencydistribution: Showsthenumberofobservationsofaparticularvariable forgiveninterval,suchasthenumberofyearsinwhichthe stockmarketreturnisbetweenintervalssuchas010%,11 20%,etc. Ahistogram,atypeofbarchart,maybeusedforthis analysis Aboxplothelpsvisualizekeystatisticsaboutthe distribution,suchasmean,median,quartiles,etc.Correlation: Comparisonbetweenobservationsrepresentedbytwo variables(X,Y)todetermineiftheytendtomoveinthe same ...
Tìm kiếm theo từ khóa liên quan:
Data visualization Lecture note Data visualization Data structures Data Visualization with C Data visualization with matlab Effective graphical displayTài liệu liên quan:
-
Trực quan hóa dữ liệu: Vai trò & thử thách
10 trang 37 0 0 -
Ebook Eloquent JavaScript - A modern introduction to programming: Part 1
199 trang 33 0 0 -
Ebook Management support systems: Part 2 - Dr. Kamlesh Lakhwani
136 trang 31 0 0 -
Lecture Introduction to computing systems (2/e): Chapter 19 - Yale N. Patt, Sanjay J. Patel
28 trang 30 0 0 -
Ebook Introduction to algorithms (3rd edition)
1313 trang 28 0 0 -
Lecture Data Structures: Lesson 38
71 trang 27 0 0 -
Lecture Data structures and algorithms: Chapter 1 - Introduction
41 trang 26 0 0 -
169 trang 24 0 0
-
Lecture note Data visualization - Chapter 22
21 trang 24 0 0 -
335 trang 23 0 0