LSTM for human activity recognition based on feature extraction method using conformal geometric algebra
Số trang: 7
Loại file: pdf
Dung lượng: 314.29 KB
Lượt xem: 22
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In this paper, we propose to use Conformal Geometric Algebra (CGA) to feature extraction and reduce dimensions of the data. First, the action data is preprocessed to normalize the data. Next, use CGA to reduce dimensions of data and create feature vectors. Finally, use the LSTM for training and prediction. The experiment was conducted on the CMU dataset with 8 different actions and the results showed that the proposed method has higher results than the previous methods.
Nội dung trích xuất từ tài liệu:
LSTM for human activity recognition based on feature extraction method using conformal geometric algebra
Nội dung trích xuất từ tài liệu:
LSTM for human activity recognition based on feature extraction method using conformal geometric algebra
Tìm kiếm theo từ khóa liên quan:
Conformal geometric algebra Deep learning Human activity recognition Long short term memory Principal components analysis Principal components regressionGợi ý tài liệu liên quan:
-
8 trang 200 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 33 0 0 -
11 trang 31 0 0
-
Modern approaches in natural language processing
25 trang 31 0 0 -
Improving hand posture recognition performance using multi-modalities
10 trang 30 0 0 -
8 trang 29 0 0
-
Đề xuất thuật toán phân loại văn bản tiếng Việt sử dụng mạng LSTM và Word2vec
13 trang 29 0 0 -
DOA estimation based on LSTM neural network with uniform linear antenna array
6 trang 29 0 0 -
91 trang 29 0 0
-
8 trang 28 0 0