Thông tin tài liệu:
Luận văn: Một số phương pháp nghiên cứu bài toán điểm tới hạn giới thiệu tới các bạn những nội dung về phương pháp trưởng giả Gradient; phương pháp sử dụng nguyên lý biến phân Ekeland; phương pháp sử dụng ánh xạ đa trị.
Nội dung trích xuất từ tài liệu:
Luận văn: Một số phương pháp nghiên cứu bài toán điểm tới hạnMột số phương pháp nghiên cứu bài toán điểm tới hạn Võ Giang Giai Trường Đại học Sư phạm Tp.HCM , 2004 Phöông Phaùp Tröôøng Giaû Gradient CHÖÔNG I: PHÖÔNG PHAÙP TRÖÔØNG GIAÛ GRADIENT I. CAÙC ÑÒNH NGHÓA VAØ ÑÒNH LYÙ CÔ SÔÛ: Trong suoát chöông naøy, neáu khoâng noùi gì theâm thì ta luoân hieåu raèng Xlaø khoâng gian Banach vaø phieám haøm f : X → R thuoäc lôùp C 1 . Ñònh nghóa 1: Phieám haøm f goïi laø thoaû ñieàu kieän (C ) , neáu : ⎧⎪{ f (v n )} bò chaën ∀{v n } ⊂ X : ⎨ ⎪⎩nlim df (v n ) = 0 → +∞ thì ∃{vn } hoäi tuï k . Ñaëc bieät: Neáu ñieàu kieän treân nghieäm ñuùng treân f ≥ α > 0 (töông öùngf ≤ −α < 0 ) thì ta noùi raèng f thoaû maõn ñieàu kieän (C + ) (töông öùng (C − ) ) . Ñònh lyù 2: (a) Neáu f thoaû ñieàu kieän (C − ) thì: (∀k , α > 0, ∃r ≥ 0, δ > 0 : ∀v ∈ X ,− k < f (v ) < −α , v > r ⇒ df (v ) > δ ) (1) (b) Giaû söû f thoaû ñoàng thôøi 2 ñieàu kieän sau: (i). ∀k ,α > 0, ∃ r ≥ 0, δ > 0 : ∀v ∈ X ,− k < f (v ) < −α , v > r ⇒ df (v ) > δ ⎧⎪ f (v n ) < 0, ∀n ∈ N * (ii). Neáu ∀{v n } bò chaën ⊂ X : ⎨ ⎪⎩nlim df (v n ) = 0 → +∞ thì ∃{vn k } hoäi tuï. Khi ñoù f nghieäm ñuùng ñieàu kieän (C − ) . Chöùng minh: (a) Giaû söû f thoaû ñieàu kieän (C − ) nhöng khoâng thoaû (1) Trang 3 Phöông Phaùp Tröôøng Giaû Gradient Vì vaäy ∃ k 0 ,α 0 > 0 vaø {v n } ⊂ X sao cho: ⎧ ⎪− k 0 < f (v n ) < −α 0 (2) ⎪ ⎨ vn > n (∀n ∈ N * ) (3) ⎪ ⎪ df (v n ) < 1 (4) ⎩ n Töø (2) vaø (4) suy ra ∃ {vn k } hoäi tuï (Vì f thoaû ñieàu kieän (C − ) ) Cuøng vôùi (3) ta coù v n ≥ nk ≥ k , ∀k ∈ N * k Do ñoù lim v nk = +∞ k → +∞ Ñieàu naøy daãn ñeán maâu thuaãn vôùi {vn } hoäi tuï. k (b) Xeùt daõy {v n } ⊂ X , { f (v n )} bò chaën döôùi, f (v n ) ≤ −α < 0, ∀n ∈ N * vaø lim df (v n ) = 0 (5) n → +∞ ta caàn chöùng minh ∃{vn } hoäi tuï. k Quaû vaäy, giaû söû {v n } khoâng bò chaën, töùc laø: { } ∃ v nk sao cho v nk ≥ k , ∀k ∈ N * Goïi − β < 0 laø moät chaën döôùi cuûa { f (v n )} thì: ( ) − β ≤ f v nk ≤ −α , v nk ≥ k , ∀k ∈ N * Theo ñieàu kieän (i) ∃δ > 0 (khoâng phuï thuoäc vaøo k) sao cho: ( ) > δ , ∀k ∈ N df v nk * Daãn ñeán maâu thuaãn vôùi ñieàu kieän (5) Töùc laø {v n } bò chaën Do ñoù theo ñieàu kieän (ii) ∃ {v n } hoäi tuï k . Heä quaû 3: Neáu X laø khoâng gian ñònh chuaån höõu haïn chieàu thì ñieàu kieän (C − )töông ñöông vôùi ñieàu kieän: ∀k, α > 0, ∃r ≥ 0, δ > 0 : ∀v ∈ X,− k < f (v ) < −α, v > r ⇒ df (v ) > δ Trang 4 Phöông Phaùp Tröôøng Giaû Gradient Chöùng minh: Ta ñaõ bieát raèng trong khoâng gian höõu haïn chieàu: “Moïi daõy bò chaën ñeàutoàn taïi ít nhaát moät daõy con hoäi tuï”. Vì vaäy, neáu X laø höõu haïn chieàu thì keát hôïp vôùi ñònh lyù 2 ôû treân ta coùngay heä quaû 3 . Ñònh nghóa 4: Phieám haøm f goïi laø rieâng, neáu ∀ K laø taäp compact trong R thì f −1 (K )laø taäp compact trong X . ...