Danh mục

Một số giải pháp tối ưu tập luật mờ TSK trích xuất từ máy học véctơ hỗ trợ hồi quy

Số trang: 8      Loại file: pdf      Dung lượng: 418.51 KB      Lượt xem: 7      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 2,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trích xuất tập luật mờ TSK (Takagi-Sugeno-Kang) từ máy học véctơ hỗ trợ là một trong những hướng tiếp cận để xây dựng mô hình mờ cho các bài toán dự đoán, dự báo. Nghiên cứu đề xuất và thực nghiệm một số giải pháp nhằm rút gọn, tối ưu tập luật mờ TSK trích xuất được nhưng vẫn đảm bảo hiệu quả dự đoán, dự báo của mô hình.
Nội dung trích xuất từ tài liệu:
Một số giải pháp tối ưu tập luật mờ TSK trích xuất từ máy học véctơ hỗ trợ hồi quyKỷ yếu Hội nghị KHCN Quốc gia lần thứ XI về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR); Hà Nội, ngày 09-10/8/2018DOI: 10.15625/vap.2018.00045 MỘT SỐ GIẢI PHÁP TỐI ƯU TẬP LUẬT MỜ TSK TRÍCH XUẤT TỪ MÁY HỌC VÉCTƠ HỖ TRỢ HỒI QUY Nguyễn Đức Hiển, Lê Mạnh Thạnh Khoa Công nghệ thông tin, Trường Đại học Khoa học, Đại học Huế hiencit@gmail.com, lmthanh@hueuni.edu.vnTÓM TẮT: Trích xuất tập luật mờ TSK (Takagi-Sugeno-Kang) từ máy học véctơ hỗ trợ là một trong những hướng tiếp cận để xâyđựng mô hình mờ cho các bài toán dự đoán, dự báo. Những nghiên cứu trước đây theo hướng tiếp cận này cho thấy mô hình mờđược huấn luyện tự động dựa trên tập dữ liệu đầu vào, dẫn đến những hạn chế chủ yếu như kích thước tập luật lớn, thiếu tính đặctrưng, thiếu tính bao phủ. Trong bài báo này, nhóm tác giả nghiên cứu đế xuất và thực nghiệm một số giải pháp nhằm rút gọn, tốiưu tập luật mờ TSK trích xuất được nhưng vẫn đảm bảo hiệu quả dự đoán, dự báo của mô mình.Từ khóa: Mô hình mờ TSK, Máy học véctơ hỗ trợ, Mô hình mờ hướng dữ liệu, Mô hình dự báo hồi quy. I. ĐẶT VẤN ĐỀ Mô hình mờ được biết đến như là một mô hình khá hiệu quả trong việc xử lý những thông tin mơ hồ và khôngchắc đó chắn; đồng thời nó cũng thể hiện những lợi thế rõ ràng trong việc biểu diễn và xử lý tri thức. Hoạt động củamô hình mờ phụ thuộc nhiều vào hệ thống các luật mờ và quá trình suy diễn trên tập luật mờ đó. Đã có nhiều tác giảnghiên cứu và đề xuất các phương thức để xây dựng các mô hình mờ hướng dữ liệu [3, 4, 5, 6, 7, 8, 9, 10]. Vấn đề trích xuất mô hình mờ từ máy học véctơ hỗ trợ (SVM - Support Vector Machine) được nhóm tác giả J.H Chiang và P. Y Hao nghiên cứu và công bố lần đầu tiên trong [3]. Một trong những vấn đề của máy học véctơ hỗ trợlà tính chính xác của mô hình thu được tỷ lệ thuận với số lượng support-vector (Sv) sinh ra; điều này đồng nghĩa vớiviệc số lượng luật mờ của mô hình mờ trích xuất được sẽ tăng lên. Nói cách khác là khi tăng hiệu suất của mô hình thìđồng nghĩa với việc làm giảm tính “sáng sủa” (tính “có thể diến dịch được”) của mô hình. Như vậy, vấn đề đặt ra làlàm thế nào có thể trích xuất được hệ thống mờ đảm bảo độ tin cậy của kết quả dự đoán, đồng thời hạn chế được sốlượng luật mờ trong mô hình. Trong bài báo này, chúng tôi đề xuất kết hợp một số giải pháp để rút gọn tập luật mờtrích xuất được, đồng thời có thể đảm bảo được độ tin cậy của kết quả dự đoán dựa vào mô hình trích xuất được. Các phần tiếp theo của bài báo bao gồm: phần II trình bày sơ lược về sự tương đương của mô hình mờ TSK vàmáy học véctơ hỗ trợ làm cơ sở cho việc xây dựng thuật toán trích xuất mô hình mờ. Phần III giới thiệu thuật toán fm-SVM* cho phép trích xuất tập luật mờ rút gọn từ SVM, trong đó có tích hợp thuật toán phân cụm k-Means và một sốgiải pháp tối lựa chọn tham số tối ưu. Phần IV giới thiệu một mô hình thực nghiệm dự báo hồi quy, trong đó có kết hợpso sánh với một số kết quả của mô hình đề xuất trước đó. Cuối cùng, trong phần V chúng tôi nêu lên một số kết luận vàđịnh hướng nghiên cứu tiếp theo. II. TRÍCH XUẤT MÔ HÌNH MỜ TSK TỪ MÁY HỌC VÉCTƠ HỖ TRỢ Hệ thống mờ TSK bao gồm một tập các luật mờ “IF - THEN”, với phần kết luận của mỗi luật này là một hàm(không mờ) ánh xạ từ các tham số đầu vào tới tham số đầu ra của mô hình [3, 4, 5, 6, 10]. Giả sử có một hệ thống mờ TSK với m luật mờ được biểu diễn như sau: R :IFx isA andx isA and … andx isA THENz = g (x , x , … , x ), vớij = 1, 2, … , m (1) Trong đó x (i = 1, 2, … . n) là các biến điều kiện; z là các biến quyết định của hệ thống mờ được xác định bởihàm g (. ); A là những thuật ngữ ngôn ngữ xác định bởi hàm thành viên tương ứng μ (x). Lưu ý, μ (x) là hàm thànhviên mờ được xác định trên một véctơ nhiều chiều. Đầu ra của hệ thống mờ được tính toán như sau: ∑ z μ (x) f(x) = (2) ∑ μ (x)với μ (x) = μ (x ) (3)Nguyễn Đức Hiển, Lê Mạnh Thạnh ...

Tài liệu được xem nhiều: