Danh mục

Nâng cao chất lượng ảnh dựa trên biến đổi Curvelet

Số trang: 7      Loại file: pdf      Dung lượng: 772.92 KB      Lượt xem: 17      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: 1,000 VND Tải xuống file đầy đủ (7 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Thông tin trực quan được truyền tải dưới dạng hình ảnh kỹ thuật số đang trở thành một phương thức truyền thông chính, tuy nhiên, các hình ảnh trong quá trình nhận, mã hóa và truyền đi thường bị hỏng hoặc rung mờ do nhiễu và phương pháp chụp ảnh. Bài viết đề xuất sử dụng phương pháp dựa trên biến đổi Curvelet để nâng cao chất lượng ảnh.
Nội dung trích xuất từ tài liệu:
Nâng cao chất lượng ảnh dựa trên biến đổi Curvelet Công nghệ thông tin & Cơ sở toán học cho tin học NÂNG CAO CHẤT LƯỢNG ẢNH DỰA TRÊN BIẾN ĐỔI CURVELET Đặng Phan Thu Hương1, Nguyễn Thúy Anh2, Doãn Thanh Bình3* Tóm tắt: Thông tin trực quan được truyền tải dưới dạng hình ảnh kỹ thuật số đang trở thành một phương thức truyền thông chính, tuy nhiên, các hình ảnh trong quá trình nhận, mã hóa và truyền đi thường bị hỏng hoặc rung mờ do nhiễu và phương pháp chụp ảnh. Để cải thiện chất lượng hình ảnh, một số kỹ thuật đã được đề xuất như biến đổi Wavelet rời rạc, biến đổi Wavelet phức cây kép, các bộ lọc truyền thống,... Tuy nhiên, vẫn chưa thể đem lại hiệu quả cao do vẫn tồn tại nhiễu cao, cho kết quả hình ảnh không tốt, chưa tối ưu về độ phức tạp tính toán, mức tiêu thụ bộ nhớ và tốc độ xử lý. Trong khuôn khổ nội dung bài báo này, chúng tôi đề xuất sử dụng phương pháp dựa trên biến đổi Curvelet để nâng cao chất lượng ảnh. Từ khóa: Biến đổi Curvelet; Khử nhiễu ảnh; Biến đổi Wavelet cây kép phức. 1. MỞ ĐẦU Hình ảnh thường có nhiễu và nó không dễ dàng loại bỏ trong quá trình xử lý hình ảnh. Theo đặc trưng ảnh thực tế, tính chất thống kê nhiễu và quy luật phân bố phổ tần số, người ta đã phát triển nhiều phương pháp khử nhiễu, chúng được chia tương đối thành trường không gian và trường biến đổi như phương pháp trung bình vùng lân cận, biến đổi Wavelet,... Các phương pháp này nhìn chung có một vấn đề nan giải, đó là độ mịn nhiễu, lưu giữ thông tin chi tiết và rìa ảnh. Trong những năm gần đây, một loại biến đổi đa cấp mới dựa trên biến đổi Wavelet - biến đổi Curvelet đã phát triển nhanh chóng (E.J.Candes, 1999). Các yếu tố cấu trúc của phép biến đổi Curvelet bao gồm các tham số về kích thước, vị trí và nhiều hơn nữa là tham số định hướng cho phép nó có đặc tính định hướng tốt. Theo đó, phép biến đổi Curvelet ưu việt hơn Wavelet cũng như một số phương pháp truyền thống khác trong việc biểu thị đường biên hình ảnh, chẳng hạn như đặc trưng hình học của đường cong và đường bao, đã thu được kết quả nghiên cứu tốt trong việc xử lý hình ảnh. Bài báo này đưa ra một phương pháp cải tiến dựa trên phép biến đổi Curvelet sử dụng kỹ thuật Fusion để hợp nhất ảnh xử lý với phương pháp biến phân toàn phần (Total Variation) [7]. 2. CÁC NGHIÊN CỨU LIÊN QUAN Trong thực tế, đã có một số giải pháp nhằm nâng cao chất lượng ảnh được nghiên cứu và áp dụng như: Biến đổi Wavelet rời rạc (DWT- Discrete Wavelet Transform), Biến đổi Wavelet phức hợp cây kép (DTCWT), sử dụng mạng nơ ron được huấn luyện (DnCNN), sử dụng bộ lọc Kuan và phương pháp sử dụng bộ lọc Frost. 2.1. Phương pháp dựa vào biến đổi Wavelet rời rạc (DWT) Biến đổi Wavelet có thuộc tính đa tỷ lệ, cục bộ hóa tần số thời gian tốt. Do đó, kỹ thuật bộ lọc dựa trên Wavelet được sử dụng rộng rãi trong việc giảm nhiễu hình ảnh. Tuy nhiên, hiệu quả của các Wavelet hai chiều (2-D) tiêu chuẩn bị giới hạn bởi tính đẳng hướng trong không gian và thiếu tính bất biến dịch chuyển của các hàm cơ sở của chúng [1]. 2.2. Phương pháp dựa vào biến đổi Wavelet phức hợp cây kép (DTCWT) Đối với phương pháp dựa trên biến đổi Wavelet rời rạc, chỉ với một sự thay đổi nhỏ trong tín hiệu đầu vào có thể gây ra các hệ số Wavelet đầu ra rất khác nhau. Đây là hạn chế chính của Wavelet trong nhận dạng mẫu. Một cách để khắc phục điều này là thực hiện phép biến đổi Wavelet mà không có số thập phân. Hạn chế của phương pháp này là nó không hiệu quả về mặt tính toán, đặc biệt là trong nhiều chiều. Kingsbury đã giới thiệu một loại biến đổi Wavelet mới, được gọi là biến đổi Wavelet phức hợp cây kép, thể hiện tính chất bất biến dịch chuyển gần đúng 112 Đ. P. T. Hương, N. T. Anh, D. T. Bình, “Nâng cao chất lượng ảnh dựa trên biến đổi Curvelet.” Nghiên cứu khoa học công nghệ và độ phân giải gốc được cải thiện. Sự thành công của phép biến đổi là do việc sử dụng các bộ lọc trong không gian (a,b). Ông đề xuất một độ trễ đơn giản của một mẫu giữa các bộ lọc cấp 1 trong mỗi không gian, sau đó, sử dụng các bộ lọc pha tuyến tính độ dài chẵn và lẻ thay thế [2]. 2.3. Phương pháp mạng nơ ron được huấn luyện (DnCNN) Một phương pháp được sử dụng để loại bỏ nhiễu là sử dụng mạng DnCNN được huấn luyện nhằm loại bỏ nhiễu Gaussian. Loại bỏ nhiễu với mạng được huấn luyện có những hạn chế sau [3]: - Loại bỏ nhiễu chỉ hoạt động với hình ảnh đơn kênh 2-D; - Mạng chỉ nhận dạng nhiễu Gaussian, với một phạm vi độ lệch chuẩn hạn chế. Hình 1. Quy trình khử nhiễu DnCNN. 2.4. Phương pháp sử dụng bộ lọc Kuan [5] Kuan thực hiện lọc không gian trên từng pixel riêng lẻ bằng cách sử dụng các giá trị mức xám trong một cửa sổ hình vuông bao quanh mỗi pixel. Kích thước của bộ lọc phải là số lẻ và có thể từ 3x3 đến 11x11 pixe ...

Tài liệu được xem nhiều:

Tài liệu liên quan: