![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Networking Theory and Fundamentals - Lecture 2
Số trang: 37
Loại file: pdf
Dung lượng: 415.27 KB
Lượt xem: 18
Lượt tải: 0
Xem trước 4 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu 'networking theory and fundamentals - lecture 2', công nghệ thông tin, quản trị mạng phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Networking Theory and Fundamentals - Lecture 2 TCOM 501: Networking Theory & Fundamentals Lecture 2 January 22, 2003 Prof. Yannis A. Korilis 1 Topics 2-2 Delay in Packet Networks Introduction to Queueing Theory Review of Probability Theory The Poisson Process Little’s Theorem Proof and Intuitive Explanation Applications Sources of Network Delay 2-3 Processing Delay Assume processing power is not a constraint Queueing Delay Time buffered waiting for transmission Transmission Delay Propagation Delay Time spend on the link – transmission of electrical signal Independent of traffic carried by the link Focus: Queueing & Transmission Delay Basic Queueing Model 2-4 Buffer Server(s) Departures Arrivals Queued In Service A queue models any service station with: One or multiple servers A waiting area or buffer Customers arrive to receive service A customer that upon arrival does not find a free server is waits in the buffer Characteristics of a Queue 2-5 m b Number of servers m: one, multiple, infinite Buffer size b Service discipline (scheduling): FCFS, LCFS, Processor Sharing (PS), etc Arrival process Service statistics Arrival Process 2-6 n −1 n +1 n τn t tn τ n : interarrival time between customers n and n+1 τ n is a random variable {τ n , n ≥ 1} is a stochastic process Interarrival times are identically distributed and have a common mean E[τ n ] = E [τ ] = 1 / λ λ is called the arrival rate Service-Time Process 2-7 n −1 n +1 n sn t sn : service time of customer n at the server { s n , n ≥ 1} is a stochastic process Service times are identically distributed with common mean E [ sn ] = E [ s ] = µ µ is called the service rate For packets, are the service times really random? Queue Descriptors 2-8 Generic descriptor: A/S/m/k A denotes the arrival process For Poisson arrivals we use M (for Markovian) B denotes the service-time distribution M: exponential distribution D: deterministic service times G: general distribution m is the number of servers k is the max number of customers allowed in the system – either in the buffer or in service k is omitted when the buffer size is infinite Queue Descriptors: Examples 2-9 M/M/1: Poisson arrivals, exponentially distributed service times, one server, infinite buffer M/M/m: same as previous with m servers M/M/m/m: Poisson arrivals, exponentially distributed service times, m server, no buffering M/G/1: Poisson arrivals, identically distributed service times follows a general distribution, one server, infinite buffer */D/∞ : A constant delay system Probability Fundamentals 2-10 Exponential Distribution Memoryless Property Poisson Distribution Poisson Process Definition and Properties Interarrival Time Distribution Modeling Arrival and Service Statistics The Exponential Distribution 2-11 A continuous RV X follows the exponential distribution with parameter µ, if its probability density function is: µe− µ x if x ≥ 0 f X ( x) = if x < 0 0 Probability distribution function: 1 − e − µ x if x ≥ 0 FX ( x ) = P{ X ≤ x} = if x < 0 0 Exponential Distribution (cont.) 2-12 Mean and Variance: 1 1 E[ X ] = , Va r ( X ) = µ µ2 Proof: ∞ ∞ E[ X ] = ∫ x f X ( x ) dx = ∫ xµ e− µ x dx = 0 0 1 ∞ + ∫ e− µ x dx = = − xe− µ x ∞ µ 0 0 2 2 ∞ ∞ E[ X ] = ∫ x µ e + 2 ∫ xe− µ x dx = −µx 2 −µx ∞ dx = − x e E[ X ] = 2 2 µ µ2 ...
Nội dung trích xuất từ tài liệu:
Networking Theory and Fundamentals - Lecture 2 TCOM 501: Networking Theory & Fundamentals Lecture 2 January 22, 2003 Prof. Yannis A. Korilis 1 Topics 2-2 Delay in Packet Networks Introduction to Queueing Theory Review of Probability Theory The Poisson Process Little’s Theorem Proof and Intuitive Explanation Applications Sources of Network Delay 2-3 Processing Delay Assume processing power is not a constraint Queueing Delay Time buffered waiting for transmission Transmission Delay Propagation Delay Time spend on the link – transmission of electrical signal Independent of traffic carried by the link Focus: Queueing & Transmission Delay Basic Queueing Model 2-4 Buffer Server(s) Departures Arrivals Queued In Service A queue models any service station with: One or multiple servers A waiting area or buffer Customers arrive to receive service A customer that upon arrival does not find a free server is waits in the buffer Characteristics of a Queue 2-5 m b Number of servers m: one, multiple, infinite Buffer size b Service discipline (scheduling): FCFS, LCFS, Processor Sharing (PS), etc Arrival process Service statistics Arrival Process 2-6 n −1 n +1 n τn t tn τ n : interarrival time between customers n and n+1 τ n is a random variable {τ n , n ≥ 1} is a stochastic process Interarrival times are identically distributed and have a common mean E[τ n ] = E [τ ] = 1 / λ λ is called the arrival rate Service-Time Process 2-7 n −1 n +1 n sn t sn : service time of customer n at the server { s n , n ≥ 1} is a stochastic process Service times are identically distributed with common mean E [ sn ] = E [ s ] = µ µ is called the service rate For packets, are the service times really random? Queue Descriptors 2-8 Generic descriptor: A/S/m/k A denotes the arrival process For Poisson arrivals we use M (for Markovian) B denotes the service-time distribution M: exponential distribution D: deterministic service times G: general distribution m is the number of servers k is the max number of customers allowed in the system – either in the buffer or in service k is omitted when the buffer size is infinite Queue Descriptors: Examples 2-9 M/M/1: Poisson arrivals, exponentially distributed service times, one server, infinite buffer M/M/m: same as previous with m servers M/M/m/m: Poisson arrivals, exponentially distributed service times, m server, no buffering M/G/1: Poisson arrivals, identically distributed service times follows a general distribution, one server, infinite buffer */D/∞ : A constant delay system Probability Fundamentals 2-10 Exponential Distribution Memoryless Property Poisson Distribution Poisson Process Definition and Properties Interarrival Time Distribution Modeling Arrival and Service Statistics The Exponential Distribution 2-11 A continuous RV X follows the exponential distribution with parameter µ, if its probability density function is: µe− µ x if x ≥ 0 f X ( x) = if x < 0 0 Probability distribution function: 1 − e − µ x if x ≥ 0 FX ( x ) = P{ X ≤ x} = if x < 0 0 Exponential Distribution (cont.) 2-12 Mean and Variance: 1 1 E[ X ] = , Va r ( X ) = µ µ2 Proof: ∞ ∞ E[ X ] = ∫ x f X ( x ) dx = ∫ xµ e− µ x dx = 0 0 1 ∞ + ∫ e− µ x dx = = − xe− µ x ∞ µ 0 0 2 2 ∞ ∞ E[ X ] = ∫ x µ e + 2 ∫ xe− µ x dx = −µx 2 −µx ∞ dx = − x e E[ X ] = 2 2 µ µ2 ...
Tài liệu liên quan:
-
Giáo án Tin học lớp 9 (Trọn bộ cả năm)
149 trang 280 0 0 -
Giáo trình Hệ thống mạng máy tính CCNA (Tập 4): Phần 2
102 trang 261 0 0 -
Ngân hàng câu hỏi trắc nghiệm môn mạng máy tính
99 trang 260 1 0 -
Bài giảng: Lịch sử phát triển hệ thống mạng
118 trang 260 0 0 -
73 trang 249 0 0
-
47 trang 242 3 0
-
Đề cương chi tiết học phần Thiết kế và cài đặt mạng
3 trang 241 0 0 -
80 trang 230 0 0
-
Giáo trình Hệ thống mạng máy tính CCNA (Tập 4): Phần 1
122 trang 219 0 0 -
122 trang 217 0 0