Danh mục

Ôn tập tích phân cho học sinh 12 luyện thi

Số trang: 152      Loại file: pdf      Dung lượng: 1.03 MB      Lượt xem: 11      Lượt tải: 0    
10.10.2023

Xem trước 10 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu " Ôn tập tích phân cho học sinh 12 luyện thi " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc các bạn học tốt
Nội dung trích xuất từ tài liệu:
Ôn tập tích phân cho học sinh 12 luyện thiTraàn Só Tuøng http://Ebook.Top1.Vnhttp://maichoi.vuicaida.com Tích phaân Nhaéc laïi Giôùi haïn – Ñaïo haøm – Vi phaân1. Caùc giôùi haïn ñaëc bieät: sin x a) lim =1 x ®0 x x sin u(x) u(x) Heä quaû: lim =1 lim =1 lim =1 x ®0 sin x u(x)®0 u(x) u(x)®0 sin u(x) x æ 1ö b) lim ç 1 + ÷ = e, x Î R x ®¥ è xø 1 ln(1 + x) ex - 1 Heä quaû: lim (1 + x) x = e. lim =1 lim =1 x®0 x® 0 x x® 0 x2. Baûng ñaïo haøm caùc haøm soá sô caáp cô baûn vaø caùc heä quaû: (c)’ = 0 (c laø haèng soá) (x a ) = ax a-1 (ua ) = aua-1u æ1ö 1 æ1ö u ç ÷ = - 2 ç ÷ = - 2 èxø x èuø u ( x ) = 1 ( u ) = u 2 x 2 u (e ) = ex x (e ) = u.e u u (ax ) = a x .ln a (a u ) = a u .ln a . u 1 u (ln x ) = (ln u ) = x u 1 u (loga x ) = (loga u ) = x.ln a u.ln a (sinx)’ = cosx (sinu)’ = u’.cosu 1 u (tgx) = = 1 + tg 2 x (tgu) = = (1 + tg 2 u).u cos x 2 cos u 2 -1 - u (cot gx) = = -(1 + cot g 2 x) (cot gu) = = - (1 + cot g 2 u).u sin x 2 sin u23. Vi phaân: Cho haøm soá y = f(x) xaùc ñònh treân khoaûng (a ; b) vaø coù ñaïo haøm taïi x Î (a; b) . Cho soá gia Dx taïi x sao cho x + Dx Î (a; b) . Ta goïi tích y’.Dx (hoaëc f’(x).Dx) laø vi phaân cuûa haøm soá y = f(x) taïi x, kyù hieäu laø dy (hoaëc df(x)). dy = y’.Dx (hoaëc df(x) = f’(x).Dx AÙp duïng ñònh nghóa treân vaøo haøm soá y = x, thì dx = (x)’Dx = 1.Dx = Dx Vì vaäy ta coù: dy = y’dx (hoaëc df(x) = f’(x)dx) Trang 1Tích phaân http://Ebook.Top1.Vnhttp://maichoi.vuicaida.com Traàn Só Tuøng NGUYEÂN HAØM VAØ TÍCH PHAÂN §Baøi 1: NGUYEÂN HAØM1. Ñònh nghóa: Haøm soá F(x) ñöôïc goïi laø nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) neáu moïi x thuoäc (a ; b), ta coù: F’(x) = f(x). Neáu thay cho khoaûng (a ; b) laø ñoaïn [a ; b] thì phaûi coù theâm: F (a+ ) = f(x) vaø F (b - ) = f(b)2. Ñònh lyù: Neáu F(x) laø moät nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) thì : a/ Vôùi moïi haèng soá C, F(x) + C cuõng laø moät nguyeân haøm cuûa haøm soá f(x) treân khoaûng ñoù. b/ Ngöôïc laïi, moïi nguyeân haøm cuûa haøm soá f(x) treân khoaûng (a ; b) ñeàu coù theå vieát döôùi daïng: F(x) + C vôùi C laø moät haèng soá. Ngöôøi ta kyù hieäu hoï taát caû caùc nguyeân haøm cuûa haøm soá f(x) laø ò f(x)dx. Do ñoù vieát: ò f(x)dx = F(x) + C Boå ñeà: Neáu F¢(x) = 0 treân khoaûng (a ; b) thì F(x) khoâng ñoåi treân khoaûng ñoù.3. Caùc tính chaát cuûa nguyeân haøm: · ( ò f(x)dx ) = f(x) · ò af(x)dx = aò f(x)dx (a ¹ 0) · ò [ f(x) + g(x)] dx = ò f(x)dx + ò g(x)dx · ò f(t)dt = F(t) + C Þ ò f [ u(x)] u(x)dx = F [ u(x)] + C = F(u) + C (u = u(x))4. Söï toàn taïi nguy ...

Tài liệu được xem nhiều: