Danh mục

Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang

Số trang: 6      Loại file: pdf      Dung lượng: 106.59 KB      Lượt xem: 12      Lượt tải: 0    
10.10.2023

Phí tải xuống: 5,000 VND Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

"Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang " Trong các kỳ thi tuyển sinh sau đại học, đại số tuyến tính là môn cơ bản là môn bắc buộc đối với các thí sinh thi vào sau đại học vào cách ngành toán, cụ thể là chuyên ngành đại số, hình học, giải tích. Các bài viết nhằm cung cấp cho bạn đọc một cách hệ thống và chọn lọc những kiến thức và kỹ năng cơ bản với mục đích giúp người đọc chủ động và tích cực hơn trong...
Nội dung trích xuất từ tài liệu:
Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang Đ I S CƠ B N (ÔN THI TH C SĨ TOÁN H C) Bài 11. Cơ S , S Chi u C a Không Gian Vectơ PGS TS M Vinh Quang Ngày 27 tháng 3 năm 20051. Cơ s Cho V là không gian vectơ, α1 , α2 , . . . , αn là m t h vectơ c a V . H vectơ α1 , α2 , . . . , αn g i là h sinh c a V n u m i vectơ β ∈ V đ u bi u th tuy n tính đư c qua h α1 , α2 , . . . , αn . H vectơ α1 , α2 , . . . , αn g i là m t cơ s c a không gian vectơ V n u nó là h sinh c a V và là h đ c l p tuy n tính. T đ nh nghĩa, hai cơ s b t kỳ c a V đ u tương đương và đ c l p tuy n tính. Do đó, theo đ nh lý cơ b n chúng có s vectơ b ng nhau. S đó g i là s chi u V , ký hi u là dimV . V y theo đ nh nghĩa: dimV = s vectơ c a m t cơ s b t kỳ c a V Không gian vectơ có cơ s g m h u h n vectơ g i là không gian vectơ h u h n chi u. Không gian vectơ khác không, không có cơ s g m h u h n vvectơ g i là không gian vectơ vô h n chi u. Đ i s tuy n tính ch y u xét các không gian vectơ h u h n chi u.2. Các ví d Ví d 1. Không gian Rn , xét các vectơ: e1 = (1, 0, ..., 0) e2 = (0, 1, ..., 0) .................... e3 = (0, 0, ..., 1) D dàng ki m tra e1 , e2 , . . . , en là cơ s c a Rn , g i là cơ s chính t c c a Rn và ta có dimRn = n Ví d 2. Trong không gian vectơ các ma tr n c p m × n h s th c Mm×n (R). 1 Ta xét h vectơ {Eij }, trong đó:  . .  0 . 0 1≤i≤m Eij =  . . . 1 . . . . . .  ← hàng i,   . 1≤j≤n 0 . . 0 ↑ c tj là cơ s c a Mm×n (R) và do đó ta có dimMm×n (R) = mn Ví d 3. Rn [x] là t p các đa th c v i h s th c có b c ≤ n v i các phép toán thông thư ng là m t không gian vectơ. H vectơ 1, x, x2 , . . . , xn là m t cơ s c a Rn [x] và ta có dimRn [x] = n + 13. Tính ch t cơ b n c a không gian vectơ h u h n chi u Cho V là không gian vectơ h u h n chi u, dimV = n. Khi đó: (a) M i h vectơ có nhi u hơn n vectơ đ u ph thu c tuy n tính (b) M i h có n vectơ đ c l p tuy n tính đ u là cơ s c a V (c) M i h có n vectơ là h sinh c a V đ u là cơ s c a V (d) M i h đ c l p tuy n tính, có k vectơ đ u có th b sung têm n − k vectơ đ đư c cơ s c a V Chú ý r ng t tính ch t (b), (c) n u bi t dimV = n thì đ ch ng minh m t h n vectơ là cơ s c a V ta ch c n ch ng minh h đó là h đ c l p tuy n tính ho c h đó là h sinh.4. T a đ c a vectơ trong cơ s . (a) Đ nh nghĩa Cho V là không gian vectơ n chi u (dimV = n) α1 , α2 , . . . , αn là cơ s c a V . V i x ∈ V , khi đó x vi t đư c duy nh t dư i d ng: x = a1 α1 + a2 α2 + . . . + an αn , ai ∈ R B s (a1 , a2 , . . . , an ) g i là t a đ c a x trong cơ s (α), ký hi u: x/ (α) = (a1 , a2 , ..., an ) Ho c:   a1  a2  [x]/ (α) =    . .   .  an (b) Ma tr n đ i cơ s , công th c đ i t a đ Trong không gian vectơ V cho 2 cơ s : α1 , α2 , . . . , αn (α) β1 , β2 , . . . , βn (β) 2 Khi đó, các vectơ β1 , β2 , . . . , βn vi t đư c duy nh t dư i d ng:   β1 =  a11 α1 + a12 α2 + . . . + an1 αn β2 = a21 α1 + a22 α2 + . . . + an2 αn   ... ...  ... ... ... ... ... ... ... βn = an1 α1 + a2n α2 + . . . + ann αn  Ma ...

Tài liệu được xem nhiều: