PB-LNet: A model for predicting pathological subtypes of pulmonary nodules on CT images
Số trang: 13
Loại file: pdf
Dung lượng: 2.49 MB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
To investigate the correlation between CT imaging features and pathological subtypes of pulmonary nodules and construct a prediction model using deep learning. We collected information of patients with pulmonary nodules treated by surgery and the reference standard for diagnosis was post-operative pathology.
Nội dung trích xuất từ tài liệu:
PB-LNet: A model for predicting pathological subtypes of pulmonary nodules on CT images
Nội dung trích xuất từ tài liệu:
PB-LNet: A model for predicting pathological subtypes of pulmonary nodules on CT images
Tìm kiếm theo từ khóa liên quan:
BMC Cancer Pulmonary nodules Deep learning Lung cancer Post-operative pathology Clinical utilityTài liệu liên quan:
-
8 trang 221 0 0
-
Differences between physician and patient preferences for cancer treatments: A systematic review
13 trang 171 0 0 -
6 trang 166 0 0
-
Immune checkpoint inhibitors and their impact on liver enzymes and attenuation
7 trang 142 0 0 -
2011–2021 rising prevalence of HPV infection among oropharyngeal carcinoma in France
9 trang 120 0 0 -
12 trang 93 0 0
-
19 trang 74 0 0
-
17 trang 64 0 0
-
9 trang 43 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 39 0 0 -
12 trang 38 0 0
-
13 trang 38 0 0
-
Investigating the prognostic and predictive value of the type II cystatin genes in gastric cancer
17 trang 37 0 0 -
11 trang 37 0 0
-
11 trang 36 0 0
-
Tracking tumor alteration in glioma through serum fibroblast activation protein combined with image
10 trang 35 0 0 -
Evaluating the prognostic value of CD56 in pediatric acute myeloid leukemia
9 trang 35 0 0 -
11 trang 34 0 0
-
91 trang 33 0 0
-
9 trang 33 0 0