PHÂN VÙNG ẢNH
Số trang: 77
Loại file: pdf
Dung lượng: 2.32 MB
Lượt xem: 26
Lượt tải: 0
Xem trước 8 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Là một bước quan trọng trong việc phân tích và phân loại ảnh y tế, trợ giúp cho quá trình đánh giá hay chẩn đoán có sự trợ giúp của máy tính (Computer-Aided Diagnosis). Mục đích: phân chia ảnh đầu vào thành các vùng nhỏ tách rời thỏa mãn tính chất đồng nhất và liên thông bằng cách nhóm các pixel gần kề nhau thành nhóm dựa trên một số tiêu chí giống nhau định trước nào đó.
Nội dung trích xuất từ tài liệu:
PHÂN VÙNG ẢNH CHƢƠNG 5 PHÂN VÙNG ẢNH (IMAGE SEGMENTATION) Là một bước quan trọng trong việc phân tích và phân loại ảnh y tế, trợ giúp cho quá trình đánh giá hay chẩn đoán có sự trợ giúp của máy tính (Computer-Aided Diagnosis). Mục đích: phân chia ảnh đầu vào thành các vùng nhỏ tách rời thỏa mãn tính chất đồng nhất và liên thông bằng cách nhóm các pixel gần kề nhau thành nhóm dựa trên một số tiêu chí giống nhau định trước nào đó. - Tính chất đồng nhất: một vùng được gọi là đồng nhất nếu các pixel trong vùng là đồng đều. - Tính chất liên thông: một vùng được gọi là liên thông nếu tồn tại một đường liên thông giữa 2 pixel bất kỳ. Nói một cách chính xác, phân vùng một ảnh I là chia ảnh đó thành các vùng nhỏ R1, R2,... RN tách rời thỏa mãn các điều kiện sau N 1. R i I 3. H Ri true i 1 2. C Ri true 4. H Ri R j false Ba phương pháp phân vùng o Phân vùng dựa theo điểm ảnh o Phân vùng dựa theo đường biên o Phân vùng dựa theo miền Ví dụ phân vùng ảnh (a): ảnh ban đầu (b): ảnh được phân vùng Phân vùng dựa theo điểm ảnh - Dựa trên các thống kê mức xám đồ của ảnh để tạo ra các vùng đóng thuộc về các đối tượng có trong ảnh. - Phương pháp phân vùng đơn giản nhất , tính toán nhanh, có thể thực hiện dễ dàng trong thời gian thực sử dụng phần cứng chuyên biệt. Phân vùng dựa theo đường biên - Dựa trên các thông tin về đường biên của ảnh để xác định các đường bao của các đối tượng. Các đường bao nay sau đó được phân tích, sửa đổi nếu cần thiết nhằm tạo ra các vùng đóng thuộc về các đối tượng có trong ảnh. Phân vùng dựa theo miền - Các pixel được phân tích một cách trực tiếp trong quá trình phát triển vùng (region growing) dựa trên một tiêu chí giống nhau cho trước để hình thành nên các vùng đóng thuộc về các đối tượng có trong ảnh. Khi các vùng được xác định, các đặc điểm có thể được tính toán để biểu diễn vùng nhằm mô tả, phân tích, phân loại. Các đặc điểm có thể là thông tin về hình dạng, cấu trúc (texture) của vùng cũng như các thông tin xác suất (kỳ vọng-mean, phương sai-variance của các giá trị mức xám). 5.1. Phân vùng dựa theo điểm ảnh Sử dụng các thống kê mức xám đồ để xác định một hay nhiều mức ngưỡng để xắp sếp từng pixel trong ảnh. Mức ngưỡng để xắp sếp các pixel vào các lớp thu được từ phân tích mức xám đồ của ảnh. Nếu mức xám đồ có 2 đỉnh (bimodal) thì mức ngưỡng là giá trị mức xám tương ứng với điểm thấp nhất trong vùng hõm thung lũng (valley) của mức xám đồ. Nếu không, ảnh được chia thành các phần nhỏ dựa trên một số giả thiết (heuristic) về tính chất của ảnh. Mức xám đồ của từng phần sau đó được sử dụng để xác định mức ngưỡng. Chọn mức ngưỡng Mức xám đồ hai đỉnh 1 f x, y T g x, y 0 f x, y T T: mức ngưỡng được lựa chọn từ mức xám đồ. g(x,y)=1 với các pixel là đối tượng, g(x,y)=0 với các pixel là nền hoặc ngược lại tùy phân bố của chúng trên mức xám đồ. Đỉnh 1 có diện tích lớn hơn đỉnh 2 thì đỉnh 2 tương ứng với đối tượng còn đỉnh 1 tương ứng với nền (và ngược lại) Nếu mức xám đồ rõ ràng là có hai đỉnh thì phương pháp này cho kết quả rất tốt. Ảnh y tế thường có nhiều đỉnh với các yêu cầu cụ thể về vùng cần được phân vùng. Ảnh cộng hưởng từ của não cùng mức xám đồ Ảnh được phân vùng với T=12 T=12 được chọn để phân tách vùng não dưới hộp sọ ra khỏi vùng nền. Có một vài vùng trắng nhỏ bên trong vùng não được phân tách ra. Các vùng này có thể được chuyển thành đen để tính toán diện tích não tổng thể nằm dưới hộp sọ. Để phân vùng một số vùng não cụ thể như não thất (vùng lớn nằm giữa ảnh) cần xác định từ mức xám đồ thêm các mức ngưỡng khác bằng cách xem xét các đỉnh khác trong phần phân bố của mức xám đồ thuộc vào đỉnh chính thứ 2. - Chọn ngay mức ngưỡng tiếp theo. - Xác định một mức xám đồ khác (chỉ cho vùng não đã được phân vùng) rồi tính mức ngưỡng. Các vùng não tương ứng với dịch trắng, dịch não- tủy sống trong rãnh não, não thất, thương tổn (nửa bên phải ảnh) có thể nhìn thấy được trên ảnh được phân vùng với mức ngưỡng T=166. Với T=255 thì chỉ thấy não thất và thương tổn (do mật độ proton và thời gian hồi phục T2 lớn). ...
Nội dung trích xuất từ tài liệu:
PHÂN VÙNG ẢNH CHƢƠNG 5 PHÂN VÙNG ẢNH (IMAGE SEGMENTATION) Là một bước quan trọng trong việc phân tích và phân loại ảnh y tế, trợ giúp cho quá trình đánh giá hay chẩn đoán có sự trợ giúp của máy tính (Computer-Aided Diagnosis). Mục đích: phân chia ảnh đầu vào thành các vùng nhỏ tách rời thỏa mãn tính chất đồng nhất và liên thông bằng cách nhóm các pixel gần kề nhau thành nhóm dựa trên một số tiêu chí giống nhau định trước nào đó. - Tính chất đồng nhất: một vùng được gọi là đồng nhất nếu các pixel trong vùng là đồng đều. - Tính chất liên thông: một vùng được gọi là liên thông nếu tồn tại một đường liên thông giữa 2 pixel bất kỳ. Nói một cách chính xác, phân vùng một ảnh I là chia ảnh đó thành các vùng nhỏ R1, R2,... RN tách rời thỏa mãn các điều kiện sau N 1. R i I 3. H Ri true i 1 2. C Ri true 4. H Ri R j false Ba phương pháp phân vùng o Phân vùng dựa theo điểm ảnh o Phân vùng dựa theo đường biên o Phân vùng dựa theo miền Ví dụ phân vùng ảnh (a): ảnh ban đầu (b): ảnh được phân vùng Phân vùng dựa theo điểm ảnh - Dựa trên các thống kê mức xám đồ của ảnh để tạo ra các vùng đóng thuộc về các đối tượng có trong ảnh. - Phương pháp phân vùng đơn giản nhất , tính toán nhanh, có thể thực hiện dễ dàng trong thời gian thực sử dụng phần cứng chuyên biệt. Phân vùng dựa theo đường biên - Dựa trên các thông tin về đường biên của ảnh để xác định các đường bao của các đối tượng. Các đường bao nay sau đó được phân tích, sửa đổi nếu cần thiết nhằm tạo ra các vùng đóng thuộc về các đối tượng có trong ảnh. Phân vùng dựa theo miền - Các pixel được phân tích một cách trực tiếp trong quá trình phát triển vùng (region growing) dựa trên một tiêu chí giống nhau cho trước để hình thành nên các vùng đóng thuộc về các đối tượng có trong ảnh. Khi các vùng được xác định, các đặc điểm có thể được tính toán để biểu diễn vùng nhằm mô tả, phân tích, phân loại. Các đặc điểm có thể là thông tin về hình dạng, cấu trúc (texture) của vùng cũng như các thông tin xác suất (kỳ vọng-mean, phương sai-variance của các giá trị mức xám). 5.1. Phân vùng dựa theo điểm ảnh Sử dụng các thống kê mức xám đồ để xác định một hay nhiều mức ngưỡng để xắp sếp từng pixel trong ảnh. Mức ngưỡng để xắp sếp các pixel vào các lớp thu được từ phân tích mức xám đồ của ảnh. Nếu mức xám đồ có 2 đỉnh (bimodal) thì mức ngưỡng là giá trị mức xám tương ứng với điểm thấp nhất trong vùng hõm thung lũng (valley) của mức xám đồ. Nếu không, ảnh được chia thành các phần nhỏ dựa trên một số giả thiết (heuristic) về tính chất của ảnh. Mức xám đồ của từng phần sau đó được sử dụng để xác định mức ngưỡng. Chọn mức ngưỡng Mức xám đồ hai đỉnh 1 f x, y T g x, y 0 f x, y T T: mức ngưỡng được lựa chọn từ mức xám đồ. g(x,y)=1 với các pixel là đối tượng, g(x,y)=0 với các pixel là nền hoặc ngược lại tùy phân bố của chúng trên mức xám đồ. Đỉnh 1 có diện tích lớn hơn đỉnh 2 thì đỉnh 2 tương ứng với đối tượng còn đỉnh 1 tương ứng với nền (và ngược lại) Nếu mức xám đồ rõ ràng là có hai đỉnh thì phương pháp này cho kết quả rất tốt. Ảnh y tế thường có nhiều đỉnh với các yêu cầu cụ thể về vùng cần được phân vùng. Ảnh cộng hưởng từ của não cùng mức xám đồ Ảnh được phân vùng với T=12 T=12 được chọn để phân tách vùng não dưới hộp sọ ra khỏi vùng nền. Có một vài vùng trắng nhỏ bên trong vùng não được phân tách ra. Các vùng này có thể được chuyển thành đen để tính toán diện tích não tổng thể nằm dưới hộp sọ. Để phân vùng một số vùng não cụ thể như não thất (vùng lớn nằm giữa ảnh) cần xác định từ mức xám đồ thêm các mức ngưỡng khác bằng cách xem xét các đỉnh khác trong phần phân bố của mức xám đồ thuộc vào đỉnh chính thứ 2. - Chọn ngay mức ngưỡng tiếp theo. - Xác định một mức xám đồ khác (chỉ cho vùng não đã được phân vùng) rồi tính mức ngưỡng. Các vùng não tương ứng với dịch trắng, dịch não- tủy sống trong rãnh não, não thất, thương tổn (nửa bên phải ảnh) có thể nhìn thấy được trên ảnh được phân vùng với mức ngưỡng T=166. Với T=255 thì chỉ thấy não thất và thương tổn (do mật độ proton và thời gian hồi phục T2 lớn). ...
Tìm kiếm theo từ khóa liên quan:
PHÂN VÙNG ẢNH bài giảng siêu âm chẩn đoán hình ảnh siêu âm tổng quan siêu âm bài giảng chẩn đoán hình ảnhGợi ý tài liệu liên quan:
-
CÁC ĐƯỜNG CẮT CƠ BẢN TRONG SẢN KHOA
48 trang 241 0 0 -
Bài giảng Xử lý ảnh - Trần Quang Đức
209 trang 174 1 0 -
VAI TRÒ CỦA SIÊU ÂM TRONG CHẨN ĐOÁN BỆNH LÝ NGỰC
60 trang 120 0 0 -
Đề tài: Nghiên cứu giá trị chẩn đoán ung thư tuyến giáp của phân độ EU – TIRADS 2017
28 trang 112 0 0 -
Phân vùng ảnh viễn thám kích thước lớn dựa trên phân cụm mờ
7 trang 101 0 0 -
Bài giảng MRI sọ não - BS. Lê Văn Phước, TS.BS. Phạm Ngọc Hoa
182 trang 99 0 0 -
Những biểu hiện trên siêu âm của các khối u di căn ở gan
4 trang 84 0 0 -
23 trang 62 0 0
-
Bài giảng chẩn đoán hình ảnh (Phần 1) - NXB Y học
123 trang 38 0 0 -
PHƯƠNG PHÁP LẤY BỆNH PHẨM LÀM XÉT NGHIỆM VI SINH HỌ
30 trang 36 1 0