Phương pháp toán tử FK giải phương trình schrodinger cho nguyên tử hydro
Số trang: 9
Loại file: pdf
Dung lượng: 440.04 KB
Lượt xem: 22
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Phương pháp toán tử FK với phép biến đổi Laplace được sử dụng cho bài toán nguyên tử hydro. Các mức năng lượng được tính chính xác bằng số tới bậc tùy ý theo sơ đồ vòng lặp và được so sánh với kết quả chính xác. Kết quả này cho thấy triển vọng ứng dụng phương pháp toán tử FK cho các bài toán hệ nguyên tử.
Nội dung trích xuất từ tài liệu:
Phương pháp toán tử FK giải phương trình schrodinger cho nguyên tử hydro Tạp chí KHOA HỌC ĐHSP TPHCM Bùi Nguyễn Ngọc Thúy và tgk _____________________________________________________________________________________________________________ PHƯƠNG PHÁP TOÁN TỬ FK GIẢI PHƯƠNG TRÌNH SCHRODINGER CHO NGUYÊN TỬ HYDRO BÙI NGUYỄN NGỌC THÚY*, NGUYỄN ĐÌNH LUẬT**, NGUYỄN VĂN HOA***, CAO HỒ THANH XUÂN****, LÊ VĂN HOÀNG***** TÓM TẮT Phương pháp toán tử FK với phép biến đổi Laplace được sử dụng cho bài toán nguyên tử hydro. Các mức năng lượng được tính chính xác bằng số tới bậc tùy ý theo sơ đồ vòng lặp và được so sánh với kết quả chính xác. Kết quả này cho thấy triển vọng ứng dụng phương pháp toán tử FK cho các bài toán hệ nguyên tử. Từ khóa: phương pháp toán tử FK, phương trình Schrodinger, nguyên tử hydro. ABSTRACT The FK operator method for solving Schrödinger equation of hydrogen atom The FK operator method is used with the Laplace transformation for solving the hydrogen atom problem. Energy levels are calculated exactly by numbers with any given precisions after an iteration scheme and compared that allow us to obtain exact solutions. These results unveil the prospect to apply the FK operator method to atomic systems. Keywords: FK operator method, Schrodinger equation, hydrogen atom. 1. Mở đầu Bài toán nguyên tử hydro đã có lời giải chính xác nên đó là một mô hình lí tưởng cho việc kiểm chứng hiệu quả của các phương pháp gần đúng giải phương trình Schrödinger [4, 7, 8]. Kể từ những năm 1970, đã có rất nhiều nghiên cứu với nhiều phương pháp khác nhau như sử dụng phương pháp biến phân [4], gần đúng Hartree- Fock [8], giải trực tiếp phương trình Schrödinger bằng phương pháp số [7] cho nguyên tử hydro trong từ trường. Phương pháp toán tử được đưa ra đầu tiên vào năm 1982 bởi một nhóm các giáo sư ở trường đại học Belarus [5] và được ứng dụng thành công cho một nhóm rộng rãi các bài toán trong lí thuyết trường cũng như vật lí chất rắn, vật lí nguyên tử [6]. Phương pháp toán tử với các tính toán thuần đại số xây dựng cho nhóm các bài toán vật lí nguyên tử đang là phương pháp có tính thời sự [1, 2]. Do vậy, sử dụng bài toán nguyên tử hydro để kiểm nghiệm hiệu quả của phương pháp toán tử FK sẽ có ý nghĩa quan trọng cho việc vận dụng sau này vào các bài toán nguyên tử phức tạp hơn. * HVCH, Trường Đại học Khoa học Tự nhiên, ĐHQG TPHCM ** HVCH, Trường Đại học Khoa học Tự nhiên, ĐHQG TPHCM *** TS, Trường Đại học Sư phạm TPHCM **** ThS, Trường Cao đẳng Nông nghiệp Nam Bộ, thành phố Mỹ Tho, Tiền Giang ***** PGS TSKH, Trường Đại học Sư phạm TPHCM 103 Tạp chí KHOA HỌC ĐHSP TPHCM Số 36 năm 2012 _____________________________________________________________________________________________________________ Một trong các khó khăn khi vận dụng phương pháp toán tử cho bài toán nguyên tử chính là thành phần tương tác Coulomb có các biến số nằm trong mẫu số. Trong công trình [2], khó khăn này được giải quyết bằng cách sử dụng phép biến đổi Kustaanheimo-Stiefel để đưa bài toán về không gian bốn chiều. Tuy nhiên, chính phép biến đổi này đã làm phát sinh những khó khăn khác khi giải bài toán, đó là làm cho nó khó phát triển cho các trạng thái kích thích và phát triển cho bài toán nguyên tử nhiều điện tử. Do đó, trong công trình này chúng tôi sử dụng phép biến đổi Laplace để vượt qua khó khăn nêu trên khi vận dụng phương pháp toán tử FK. Chúng tôi sẽ sử dụng sơ đồ vòng lặp để tính bổ chính bậc cao nhằm thu được lời giải chính xác bằng số. Để minh họa, chúng tôi đưa ra kết quả cho trạng thái cơ bản và một vài mức kích thích của nguyên tử hydro. Kết quả sẽ so sánh với nghiệm chính xác giải tích để thấy được độ tin cậy của phương pháp toán tử FK. 2. Bộ hàm cơ sở dưới biểu diễn đại số Ta định nghĩa các toán tử ω⎛ 1 ∂ ⎞ ω⎛ 1 ∂ ⎞ aˆ j = ⎜⎜ x j + ⎟, aˆ +j = ⎜⎜ x j − ⎟, (1) 2⎝ ω ∂x j ⎟⎠ 2⎝ ω ∂x j ⎟⎠ thỏa mãn các hệ thức giao hoán ⎡ aˆ j , aˆ k+ ⎤ = δ jk . (2) ⎣ ⎦ trong đó j, k = 1, 2, 3 tương ứng với 3 trục Ox, Oy, Oz; ω là tham số thực dương. Để tiện sử dụng ta kí hiệu: Aˆ = aˆ j aˆ j , Aˆ + = aˆ +j aˆ +j , Nˆ = 2aˆ +j aˆ j + 3 (3) với sự lặp lại hai chỉ số có nghĩa là lấy tổng trên toàn miền thay đổi chỉ số j = 1,2,3 . Dễ dàng kiểm chứng các giao hoán tử sau: ...
Nội dung trích xuất từ tài liệu:
Phương pháp toán tử FK giải phương trình schrodinger cho nguyên tử hydro Tạp chí KHOA HỌC ĐHSP TPHCM Bùi Nguyễn Ngọc Thúy và tgk _____________________________________________________________________________________________________________ PHƯƠNG PHÁP TOÁN TỬ FK GIẢI PHƯƠNG TRÌNH SCHRODINGER CHO NGUYÊN TỬ HYDRO BÙI NGUYỄN NGỌC THÚY*, NGUYỄN ĐÌNH LUẬT**, NGUYỄN VĂN HOA***, CAO HỒ THANH XUÂN****, LÊ VĂN HOÀNG***** TÓM TẮT Phương pháp toán tử FK với phép biến đổi Laplace được sử dụng cho bài toán nguyên tử hydro. Các mức năng lượng được tính chính xác bằng số tới bậc tùy ý theo sơ đồ vòng lặp và được so sánh với kết quả chính xác. Kết quả này cho thấy triển vọng ứng dụng phương pháp toán tử FK cho các bài toán hệ nguyên tử. Từ khóa: phương pháp toán tử FK, phương trình Schrodinger, nguyên tử hydro. ABSTRACT The FK operator method for solving Schrödinger equation of hydrogen atom The FK operator method is used with the Laplace transformation for solving the hydrogen atom problem. Energy levels are calculated exactly by numbers with any given precisions after an iteration scheme and compared that allow us to obtain exact solutions. These results unveil the prospect to apply the FK operator method to atomic systems. Keywords: FK operator method, Schrodinger equation, hydrogen atom. 1. Mở đầu Bài toán nguyên tử hydro đã có lời giải chính xác nên đó là một mô hình lí tưởng cho việc kiểm chứng hiệu quả của các phương pháp gần đúng giải phương trình Schrödinger [4, 7, 8]. Kể từ những năm 1970, đã có rất nhiều nghiên cứu với nhiều phương pháp khác nhau như sử dụng phương pháp biến phân [4], gần đúng Hartree- Fock [8], giải trực tiếp phương trình Schrödinger bằng phương pháp số [7] cho nguyên tử hydro trong từ trường. Phương pháp toán tử được đưa ra đầu tiên vào năm 1982 bởi một nhóm các giáo sư ở trường đại học Belarus [5] và được ứng dụng thành công cho một nhóm rộng rãi các bài toán trong lí thuyết trường cũng như vật lí chất rắn, vật lí nguyên tử [6]. Phương pháp toán tử với các tính toán thuần đại số xây dựng cho nhóm các bài toán vật lí nguyên tử đang là phương pháp có tính thời sự [1, 2]. Do vậy, sử dụng bài toán nguyên tử hydro để kiểm nghiệm hiệu quả của phương pháp toán tử FK sẽ có ý nghĩa quan trọng cho việc vận dụng sau này vào các bài toán nguyên tử phức tạp hơn. * HVCH, Trường Đại học Khoa học Tự nhiên, ĐHQG TPHCM ** HVCH, Trường Đại học Khoa học Tự nhiên, ĐHQG TPHCM *** TS, Trường Đại học Sư phạm TPHCM **** ThS, Trường Cao đẳng Nông nghiệp Nam Bộ, thành phố Mỹ Tho, Tiền Giang ***** PGS TSKH, Trường Đại học Sư phạm TPHCM 103 Tạp chí KHOA HỌC ĐHSP TPHCM Số 36 năm 2012 _____________________________________________________________________________________________________________ Một trong các khó khăn khi vận dụng phương pháp toán tử cho bài toán nguyên tử chính là thành phần tương tác Coulomb có các biến số nằm trong mẫu số. Trong công trình [2], khó khăn này được giải quyết bằng cách sử dụng phép biến đổi Kustaanheimo-Stiefel để đưa bài toán về không gian bốn chiều. Tuy nhiên, chính phép biến đổi này đã làm phát sinh những khó khăn khác khi giải bài toán, đó là làm cho nó khó phát triển cho các trạng thái kích thích và phát triển cho bài toán nguyên tử nhiều điện tử. Do đó, trong công trình này chúng tôi sử dụng phép biến đổi Laplace để vượt qua khó khăn nêu trên khi vận dụng phương pháp toán tử FK. Chúng tôi sẽ sử dụng sơ đồ vòng lặp để tính bổ chính bậc cao nhằm thu được lời giải chính xác bằng số. Để minh họa, chúng tôi đưa ra kết quả cho trạng thái cơ bản và một vài mức kích thích của nguyên tử hydro. Kết quả sẽ so sánh với nghiệm chính xác giải tích để thấy được độ tin cậy của phương pháp toán tử FK. 2. Bộ hàm cơ sở dưới biểu diễn đại số Ta định nghĩa các toán tử ω⎛ 1 ∂ ⎞ ω⎛ 1 ∂ ⎞ aˆ j = ⎜⎜ x j + ⎟, aˆ +j = ⎜⎜ x j − ⎟, (1) 2⎝ ω ∂x j ⎟⎠ 2⎝ ω ∂x j ⎟⎠ thỏa mãn các hệ thức giao hoán ⎡ aˆ j , aˆ k+ ⎤ = δ jk . (2) ⎣ ⎦ trong đó j, k = 1, 2, 3 tương ứng với 3 trục Ox, Oy, Oz; ω là tham số thực dương. Để tiện sử dụng ta kí hiệu: Aˆ = aˆ j aˆ j , Aˆ + = aˆ +j aˆ +j , Nˆ = 2aˆ +j aˆ j + 3 (3) với sự lặp lại hai chỉ số có nghĩa là lấy tổng trên toàn miền thay đổi chỉ số j = 1,2,3 . Dễ dàng kiểm chứng các giao hoán tử sau: ...
Tìm kiếm theo từ khóa liên quan:
Phương pháp toán tử FK Phương trình Schrodinger Nguyên tử hydro Bài toán nguyên tử hydro Lí thuyết nhiễu loạn Phương pháp toán tửGợi ý tài liệu liên quan:
-
Bài giảng Vật lý đại cương 3 - Chương 7: Vật lý nguyên tử
24 trang 253 0 0 -
Bài giảng Vật lý đại cương 3 - Chương 6: Cơ học lượng tử
27 trang 52 0 0 -
Khóa luận tốt nghiệp đại học: Phương pháp toán tử trong cơ học lượng tử
53 trang 47 0 0 -
Bài giảng Lý thuyết mạch 2 - Chương 6: Quá trình quá độ
154 trang 37 0 0 -
Năng lượng trạng thái cơ bản của nguyên tử hydro trong từ trường đều có cường độ bất kì
13 trang 31 0 0 -
Bài tập lớn Cơ học lượng tử: Cách giải bài tập chương 3,4,5,6,7
58 trang 30 0 0 -
Phương pháp toán tử FK cho bài toán phi nhiễu loạn
9 trang 29 0 0 -
143 trang 29 0 0
-
Bài giảng Cơ sở vật lý chất rắn - Bài 3: Dao động mạng tinh thể
37 trang 27 0 0 -
Khóa luận tốt nghiệp Phương pháp toán tử cho bài toán Exciton hai chiều
81 trang 27 0 0